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Abstract: In this paper a continuous time state space aerodynamic model is extended for
accepting arbitrary motion, control surface deflection and gust velocities as inputs. Equations
for formulating the inner state equation are outlined first followed by the numerical descrip-
tion of the boundary condition. The force calculation is presented using an unsteady form of
the Kutta-Joukowski theorem enabling the method of unsteady induced drag prediction. Met-
hods for linearization are presented. The resulting model inputs are motion, control surface
deflection and gust velocities and accelerations while the system outputs are panel forces. To
validate the modeling approach, comparisons to analytical methods are carried out for various
oscillatory motions. Besides integrated coefficients for vertical force, drag, pitching moment
and hingemoment, comparisons for unsteady pressure distributions are carried out. The com-
parisons indicate good agreement for a large range of reduced frequencies. The influence of
wake truncation distance and discretization is discussed. Because of its time-domain formula-
tion, the model is especially suitable for efficient aerodynamic loads analysis within aeroelastic
modeling, analysis and optimization frameworks for preliminary aircraft design.

1 INTRODUCTION

The assessment of aircraft flight dynamics, i.e. the analysis of stability and performance, requi-
res besides others the modeling of the aerodynamic forces. Within conceptual and preliminary
design, high turn-around times are necessary for efficient multidisciplinary design optimization.
Therefore, potential flow methods for predicting aerodynamic forces have been commonly used
in the past because of their relatively low computational costs. Ambitious goals regarding fuel-
efficiency drive the development of aircraft towards concepts with reduced structural weight and
thus increased structural flexibility making static and dynamic aeroelastic effects non-negligible
in the early design stages of aircraft. Thus, accurate modeling and prediction of the unsteady
aerodynamics is of great importance.
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1.1 Background

Kier [1] described and collected different unsteady aerodynamic modeling approaches. The
most important models to name are the doublet lattice method (DLM), strip theory and the un-
steady vortex lattice method (UVLM). Advantages of the UVLM and their possible applications
have been described by Murua et al. [2]. One of the most important advantages is the capability
of modeling nonlinear effects such as deformed wake shapes. Hall [3] described the UVLM
as a discrete time state space model formulation. A formulation of the UVLM in continuous
time has been first presented by Gologan and Schneider [4]. Mauermann used the results for
the development of a novel approach for flexible aircraft modeling [5]. Mohammadi-Amin et
al. [6] also developed a continuous time state space aerodynamic model based on the boundary
element method in order to overcome disadvantages of discrete models (e.g. fixed time step)
for nonlinear analysis and aeroervoelastic optimization. Their description includes a special
treatment of the flow tangency condition at the trailing edge which differs from the formulation
of Gologan et al. [4]. Werter et al. [7] used those results to formulate the UVLM in a continuous
time state space description. Instead of using constant strength doublet panels, vortex ring ele-
ments have been used. Arbitrary wing geometries as well as cambered surfaces can be modeled
with this approach. The formulation of Werter et al. [7] lacks arbitrary inputs like three dimen-
sional rigid body motion and gusts. Also the equations are linearized from the beginning which
limits the method to lift calculation for small angle of attack perturbations around a reference
point.

1.2 Goal of the Present Paper

In this paper, the formulation by Werter et al. [7] is extended for accepting arbitrary motion,
control surface deflections and panel gust velocities as inputs. The resulting model shall be
used in dAEDalus, a nonlinear aeroelastic flight simulation and preliminary aircraft design fra-
mework [8]. The formulation is further extended to describe three dimensional forces on the
panels. In order to validate the overall implementation, a linearized version of the resulting
nonlinear model is first used to calculate unsteady derivatives as well as unsteady pressure dis-
tributions for various motions including unsteady flap oscillations which are then compared to
analytical solutions. The nonlinear model is then used to calculate the unsteady drag of plunging
and pitching motion followed by a comparison to analytical solutions.

2 MODELING OF UNSTEADY AERODYNAMICS

The UVLM is based on potential flow theory. With the assumption of irrotational and incom-
pressible flow, the governing equation of potential flow methods reduces to the Laplace equa-
tion. Due to the linearity of the Laplace equation, the flow problem can be stated and solved by
a superposition of fundamental solutions for which analytical solutions of the flowfield exist.
While the DLM is using doublets (source-sink pair) the fundamental solution of choice in the
UVLM is the closed, constant strength vortex ring. In order to model aircraft configurations
to solve the flowfield with potential flow methods, the lifting surfaces are discretized by panels
(see Fig. 1). In the UVLM also the wake is discretized using panels. At each of the bound pa-
nels, a vortex ring is constructed with it’s leading edge segment placed at the one-quarter chord
line of the panel (see Fig. 1 A). Vortex rings in the wake are placed in a way that they coincide
with the panels’ edges (see Fig. 1 B). To account for camber, twist and other 3D effects, the
bound panels are arranged on the mean surface (between top and bottom skin) of the wings.
The position of the wake panels is given by the trajectory of the lifting surface as well as the
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flowfield behind the wing. The wake panels are so to say shed into the wake at every time step
and from that point on free floating in the flow field (force free wake).

A

V∞

B

Figure 1: Discretization of a wing surface (light gray panels) and wake (white panels) in the unsteady vortex lattice
method. Control surface panels are highlighted in dark gray. A: Vortex rings with collocation points (•)
and force application points (◦); B: Arrangement of vortex rings at the trailing edge and in the wake.

The solving procedure of the classical, time-stepping UVLM is as follows. For the determi-
nation of the strengths of all vortex rings ~Γ (unknowns) at time T = t1, the same number of
equations as panels is needed. One set of equations is obtained by introducing so called boun-
dary conditions stating that there may be no flow penetrating the wings surface (also called
non-penetration condition or zero normal-flow condition). In the UVLM, this non-penetration
condition is fulfilled at the center of the vortex rings, i.e. the three-quarter chord of the panels.
The vortex-ring induced velocity at those collocation points can be calculated with the influ-
ence coefficients which in turn are calculated from the spatial distribution of vortex-rings and
collocation points. Another set of equations is obtained by the fulfillment of the Kutta condition
which states that no circulation may exist at the wings trailing edge. The remaining required
equations are put up by the assumption that the vorticity of a wake vortex ring does not change
or changes with a known rate once being shed into the wake. Thus, the vorticity of the wake
panels is known from solutions of previous time steps (T < t1) or initial conditions. Knowing
the vorticity of each vortex-ring, the forces at every panel can be calculated using the Kutta-
Joukowski theorem. Afterwards, the procedure is repeated until solutions at all required time
steps are found. For more details of the UVLM in general, the reader is referred to [9].

2.1 Continuous Time Unsteady Vortex Lattice Method

Starting point for the proposed work is the following 3 governing equations of the UVLM
describing the boundary condition or normal-wash (~b) on the bound panels, the Kutta condition
which states that no circulation Γ may exist at the trailing edge (ΓTE = 0), and the transport of
vorticity within the wake (as outlined by Werter et al. [7]):

Boundary Condition: A1
~Γt = ~b t (1)

Kutta Condition: A2
~Γt = 0 (2)

Wake Transport Condition: A3
~Γt = A4

~Γt−1 (3)

In this equation the superscript t denotes the current time-step, and t−1 the previous time-step.
The matrix A1 contains the influence coefficients. A2 links the vorticity of the first row of the
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wake to the rest of the wake. A3 and A4 describe the vorticity transport within the wake.
For the continuous time formulation, the vector of vorticities ~Γ is first split into three parts.
Vorticities of panels on the wings surface (~Γb), vorticities of the first row in the wake (~Γw0,
smaller panels in Fig. 1 B) and the remaining vorticities of the wake (~Γw). Using a forward
Euler discretization in time for the wake transport equation Werter [7] obtains the following
equations:

Boundary Condition: 0 = K1
~Γb + K2

~Γw0 + K3
~Γw −~b (4)

Kutta Condition: 0 = K4
~Γb + K5

~Γw0 (5)

Wake Transport Condition: ~̇Γw = K6
~Γw + K7

~Γw0 (6)

Note that all equations are now written at time t. The formulation is thus not dependent on
previous times anymore (continuous time formulation). By defining ~Γw as state variable and
inserting Eq. (4) and (5) into (6), a linear state equation can be obtained:

~̇Γw = (K6 + K7(K5 −K4K1
−1K2)−1K4K1

−1K3)︸ ︷︷ ︸
K8

~Γw (7)

−K7(K5 −K4K1
−1K2)−1K4K1

−1︸ ︷︷ ︸
K9

~b (8)

~̇Γw = K8
~Γw + K9

~b (9)

2.2 Input Transformation

Werter et al. express the flow tangency condition ~b as a function of the local angle of attack of
the panels αi. Furthermore the boundary condition is linearized yielding the expression [7]:

~bi = |~V∞|

 0
0
αi

 · ~ni (10)

With ~ni being the normal vector of the panel i and ~V∞ the freestream velocity. A more general
expression of the boundary condition is:

~bi = ~Vi · ~ni (11)

To account for control surface deflection, the normal vectors of control surface panels have to
be formulated in dependency of the deflection angle. This is done using the Rodrigues rotation
formula [10]:

~ni = Tδ,i~n0,i = [I + sin(δj)Kj + (1− cos(δj))Kj
2)]~n0,i (12)

with Kj being the skew symmetric matrix of the axis direction vector ~kj of the respective control
surface j, its deflection angle δj and the normal vector at zero deflection ~ni (see Fig. 2).

To account for arbitrary motion, control surface deflection and gust velocities, the total velocity
~Vi at the collocation point of panel i is split in four parts:

~Vi = ~V∞ + ~Vω∞,i + ~Vδ̇j + ~Vg,i (13)
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~kj

CSj

B

~r CS
i

~ri

~rδ,j

~n0,i

~ni

Figure 2: Description of the kinematics involved in control surface deflection: Rotation of the normalvector of
panel i (~n0,i → ~ni) around the hinge axis ~kj and the resulting positioning vector of the collocation point
~rδ,j + ~r CS

i → ~ri

In which ~Vω∞,i is the local induced velocity due to rotations in the freestream flow field caused
by e.g. body rotation, ~Vδ̇j the velocity due to control surface deflection rate and ~Vg,i the local
gust induced velocity. The induced velocity due to rotations is described by:

~Vω∞,i = ~ω∞ × ~ri (14)

With ~ω∞ being the vector of rotations in the freestream and ~ri being the distance from the
panel’s collocation point to the rotational center (e.g. body rotational center). For control
surface panels, this distance changes with the deflection of the control surface (see Fig. 2):

~ri = (~rδ,j + Tδ,j~r
CS
i ) (15)

in which ~rδ,j is the vector from the center of rotation to the origin of the control surface coordi-
nate system CSj and ~r CS

i describes the location of the collocation point in the CSj frame.
The velocity influence due to control surface deflection rates ~Vδ̇,i is calculated as:

~Vδ̇,i = Ṫδ,j~r
CS
i (16)

with the time derivative of the Rodrigues rotation matrix Ṫδ,j:

Ṫδ,j = δ̇j(cos(δj)Kj + sin(δj)Kj
2) (17)

The gust velocities ~Vg,i are assumed to be known. In total Eq. (11) can be expressed as the
nonlinear function:

bi = (~V∞ + ~ω∞ × (~rδ,j + Tδ,j~r
CS
i ) + Ṫδ,j~r

CS
i + ~Vg,i) ·Tδ,i~n0,i (18)
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A linearized formulation of the above equation can be found assuming small control surface
deflections. In this case, the distance of the rotational center and the collocation point ~ri does
not change with control surface deflections. Furthermore it can be assumed that control surface
deflection only has an influence on the boundary condition due to freestream velocity at the
linearization point. Linearizing for a speed of |~V∞| = Vlin, Eq. (18) gets:

bi = (~V∞ + ~ω∞ × ~rδ,i + Ṫδ,j~r
CS
i + ~Vg,i) · ~n0,i + VlinTδ,i~n0,i (19)

This linearized formulation is valid for small perturbations around Vlin. The boundary condition
of all panels may also be written as a linear function of the form:

~b = f(~V∞, ~ω∞, ~δ, ~̇δ, ~Vg) (20)

With ~δ and ~̇δ being the vector of control surface deflections and rates. As later necessary, it
should be mentioned that f is a differentiable function:

~̇b = f(~V∞, ~̇V∞, ~ω∞, ~̇ω∞, ~δ, ~̇δ, ~̈δ, ~Vg, ~̇Vg) (21)

2.3 Nonlinear Force Computation

In this work, the aerodynamic forces are calculated using an unsteady vector form of the Kutta-
Joukowski theorem as outlined by Drela [11]. The unsteady force contribution from an incre-
mental segment of vorticity (described by the vector ~s) in three dimensions is [12]:

~F = ρΓ(~Vs × ~s) + ρΓ̇c(
~̂
Vs × ~̂s) (22)

where ~Vs describes the flow velocity at the center of the segment, and c the chord of the lifting
profile. Assuming the unsteady force component acts normal on each vortex ring and the normal
vector does not change with control surface deflection, the total force contribution from each
panel in three dimensions gets [13]:

~Fi = ρΓb,eff,i(~Vs,i × ~si) + ρΓ̇b,eff,iAi~n0,i (23)

Here Ai is the area of the panel and Γb,eff,i describes the effective vorticity of the bound panel i
which is defined as (see Fig. 3):

LE-Panel: Γb,eff,i = Γb,i

Other: Γb,eff,i = Γb,i − Γb,i−1 (24)
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Γb,i−1
Γb,i

Γb,eff,i

Figure 3: Determination of the effective vorticity Γb,eff,i of a wing surface bound panel i by the summation of
vorticities of adjacent vortex rings.

The vector of vorticities of the bound panels ~Γb can be expressed as a function of wake vortici-
ties ~Γw0 and vector of boundary conditions~b by substitution of Eq. (5) in (4):

~Γb = (K2K5
−1K4 −K1)−1K3︸ ︷︷ ︸

L3

~Γw −K2K5
−1K4 −K1)−1︸ ︷︷ ︸

L4

~b (25)

= L3
~Γw − L4

~b (26)

Similar, the effective derivative of the vorticity needed in Eq. (23) of the panel Γ̇b,eff,i is calcu-
lated as [14]:

LE-Panel: Γ̇b,eff,i =
1

2
Γ̇b,i

Other: Γ̇b,eff,i =
1

2
(Γ̇b,i + Γ̇b,i−1) (27)

The derivatives of the bound panel vorticities can be calculated by deriving Eq. (26) and inser-
ting the state equation (Eq. (9)):

~̇Γb = L3
~̇Γw − L4

~̇b (28)

= L3(K8
~Γw + K9

~b)− L4
~̇b (29)

= L3K8︸ ︷︷ ︸
L5

~Γw + L4K9︸ ︷︷ ︸
L6

~b− L4
~̇b (30)

= L5
~Γw + L6

~b− L4
~̇b (31)

Eq. (23) furthermore contains the total velocities at the force vector application points, i.e. the
1/4 chord points of the panels, which is calculated as:

~Vs,i = ~Vs,∞,i + ~Vs,ind,i (32)

The velocity resulting from rigid body motion and disturbances like gusts ~Vs,∞,i can be deter-
mined similarly as the total velocity at the collocation points ~Vi in Eq. (13):

~Vs,∞,i = (~V∞ + ~ω∞ × (~rδ,j + Tδ,j~r
CS
s,i ) + Ṫδ,j~r

CS
s,i + ~Vg,s,i) (33)
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The locally induced velocity at the force vector application points ~Vs,ind,i in x-,y- and z-direction
in Eq. (32) can be calculated with an additional set of influence coefficients:

~Vs,ind =



~Vs,ind,1,x
~Vs,ind,1,y
~Vs,ind,1,z

...
~Vs,ind,n,x
~Vs,ind,n,y
~Vs,ind,n,z


= K10

~Γb + K11
~Γw + K12

~Γw0 (34)

The required vorticites of the first row in the wake ~Γw0 can be expressed as a function of wake
vorticities ~Γw and boundary condition ~Γb by substitution of Eq. (4) in (5):

~Γw0 = (K5 −K4K1
−1K2)−1K4K1

−1K3︸ ︷︷ ︸
L7

~Γw − (K5 −K4K1
−1K2)−1K4K1

−1︸ ︷︷ ︸
L8

~b (35)

= L7
~Γw − L8

~b (36)

By substituting Eq. (24), (27) and (32) in Eq. (23), the three-dimensional force of all panels
can be stated as a nonlinear function of the following form:

~F =



~F1,x

~F1,y

~F1,z
...
~Fn,x
~Fn,y
~Fn,z


= f(~Γw, ~V∞, ~̇V∞, ~ω∞, ~̇ω∞, ~δ, ~̇δ, ~̈δ, ~Vg, ~̇Vg) (37)

A linearization of Eq, (23) can be found by the assumption that the induced velocity at the
vortex segment is negligible (~Vs,ind,i ≈ 0) and the freestream velocity at the segment center is
the reference condition (~Vs,∞,i ≈ ~V∞,lin):

~Fi = ρΓb,eff,i(~V∞,lin × ~si) + ρΓ̇b,eff,iAi~n0,i (38)

2.4 Overall State Space Model Integration

To realize the overall system, the wake vorticities are chosen as states (~x = ~Γw). The inputs to
the system are freestream velocity, freestream rotation, control surface deflections, gust velo-

cities and their derivatives (~u = [~V∞, ~̇V∞, ~ω∞, ~̇ω∞, ~δ, ~̇δ, ~̈δ, ~Vg, ~̇Vg]
T ). The output of the system

is formed by the three-dimensional panel forces (~y = ~F ). A nonlinear state space model can
be described by using the state equation (Eq. (9)), the linearized formulation of the boundary
condition (Eq. (20) & (21)) and the nonlinear form of the force computation (Eq. (37)):

~̇x = A~x+ B~u (39)
~y = f(~x, ~u) (40)
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A second model is realized using the linearized version of the force computation described in
Eq. (38). With this equation, the overall system gets linear and can be realized in the form of a
general linear state space system:

~̇x = A~x+ B~u (41)
~y = C~x+ D~u (42)

3 RESULTS AND DISCUSSION

In order to verify the proposed modeling approach, the response due to various unsteady moti-
ons are investigated in the following.

In this chapter, first a comparison of the linearized model (second model) with analytical solu-
tions from Theodorsen [15] and Kier [16] are presented in order to validate the overall imple-
mentation of the continuous time unsteady vortex lattice method. A grid independence study is
presented identifying the minimum chordwise discretization needed. Furthermore, the influence
of the truncation distance of the wake is discussed. The nonlinear force computation (second
model) is then compared to analytical solutions described by Garrick [17]. All the analytical
methods used for comparison are formulated for 2D flat plate airfoil section.

3.1 Performance Evaluation of the Linearized Model

Theodorsen analyses the problem of unsteady aerodynamics of an oscillating airfoil-aileron
combination of three degrees of freedom (vertical/plunge, pitch and aileron/flap degree of free-
dom). The solution consists of unsteady integrated vertical force, pitching moment and flap
hinge moment coefficients (CZ , CM and CH) for harmonic plunging, pitching and control sur-
face motion in dependency of the reduced frequency (k = ωc

2V∞
; nondimensionalized frequency),

the pitching axis location xp and the hingeline position xh [15].

To mimic the 2D problem with the 3D implementation of the UVLM, a wing with an extremely
large aspect ratio of AR = 5000 is modeled. The wake is modelled with a high length of 20
chord-lengths. Furthermore, the pitching axis is placed at the one quarter chord axis (xp =
0.25c), the flap hingeline is positioned at the three quarter chord location (xh = 0.75c). Unless
otherwise stated, the airfoil is discretized using 32 panels in chordwise direction and 8 panels
in spanwise direction. The discretization of the wake is chosen accordingly meaning that the
length and width of wake panels is the same as the length and width of the bound panels which
is necessary for the validity of the wake transport equation.

3.1.1 Frequency Response

The standard method of characterizing linear system dynamics is using the frequency response
as a quantitative measure. To compare the UVLM to the results from Theodorsen [15], the error
in magnitude and phase is calculated. The magnitude error is defined as difference between the
UVLM and Theodorsen magnitude data normed to the Theodorsen magnitude. The phase error
is defined as the difference between the UVLM and Theodorsen phase data normed to π

2
.
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Figure 4: Frequency response error of the linearized continuous time UVLM in magnitude and phase with respect
to Theodorsen [15] for plunging, pitching and flap oscillatory motion.

Figure 4 shows the error in the frequency response of the linearized model (second model) with
respect to the analytical solution for harmonic plunging, pitching and flap motion and reduced
frequencies ranging from 0 to 10. It can be seen that the error in the coefficients is especially
high for flap oscillatory motion. Also the error in the hingemoment coefficient is larger than the
overall airfoil pitching moment and vertical force coefficient. A possible cause is the discrete
manner of panel methods. Linear downwash distributions as they occur for pitching and flap
motion are approximated panel-wise constant. Since integrated values do not provide enough
information, the chordwise distribution of the forces is discussed next to further understand the
origin of the errors.

3.1.2 Unsteady Pressure Distribution

The expressions used for the analyses in this paper have been taken from Kier who summarized
the derivation of analytical expressions in [16]. The unsteady pressure distribution of the UVLM
is computed by looking at the response of single panels to harmonic plunging, pitching and flap
motion at specified reduced frequencies.

10



IFASD-2017-019

0 0.2 0.4 0.6 0.8 1

−4

−2

0

2
R

e(
∆
c p

)

Plunge

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

Im
(∆
c p

)

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0
Pitch

0 0.2 0.4 0.6 0.8 1

−4

−2

0

2

4

Chordwise position x/c

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

Flap

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

Kier exact [16] Kier DLM [16] Present Work

Figure 5: Real and imagniary part of the unsteady pressure distribution for a frequency of k = 0.5.

Figure 5 shows the real and imaginary parts of the unsteady pressure distribution for a moderate
reduced frequency of k = 0.5. The overall characteristics are in excellent agreement. This
counts for the UVLM as for the DLM. A closer look at the magnitude and phase difference is
needed in order to make further conclusions.
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Figure 6: Magnitude and phase difference in the unsteady pressure distribution of the UVLM (left) and the
DLM(right, [16]) compared to the exact method presented in [16] for a reduced frequency of k = 0.5.

Figure 6 shows the error in magnitude and phase which reveals that the biggest difference
for plunging and pitching motion occurs at the leading and trailing edge. For flap oscillatory
motion, a greater difference in magnitude can be also found near the hingeline. One reason for
the differences is the discrete nature of the UVLM and the DLM. The height and position of
the suction peaks (see Figure 5) at the the leading edge and control surface hinge position can
not be resolved correctly. This explains the errors of the UVLM in magnitude and phase of
the integrated coefficients for flap motion. The errors in magnitude and phase are comparable
between the UVLM and the DLM for a reduced frequency of k = 0.5.
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Figure 7: Real and imagniary part of the unsteady pressure distribution for a reduced frequency of k = 1000.

Figure 7 shows the unsteady pressure distribution for an extremely large reduced frequency
of k = 1000. Of course, such a high frequency has no practical importance. Remarkable is
the performance of the UVLM compared to the results produced by Kier with the DLM for
high reduced frequencies and the same chordwise discretization. While the DLM ”breaks down
completely” [16] and is not capable of representing any of the high frequency characteristics,
the UVLM shows quite good results for all types of motion and all coefficients.

3.1.3 Influence of the Chordwise Discretization

As already mentioned, a finer discretization can reduce the errors introduced by panel-wise
constant approximations of forces and boundary conditions. Thus, a grid dependency study is
carried out varying the chordwise discretization from 10 to 100 panels on the wings surface.
The wake panels are adjusted accordingly so that the length of the panels in the wake always
matches the length of the panels on the wing surface.
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Figure 8: Convergence behaviour of the integrated coefficients (left: vertical force coefficientCZ ; middle: pitching
moment coefficient CM ; right: flap hinge moment coefficient CH ) with respect to chordwise discretiza-
tion (number of panels in chord direction) for a reduced frequency of k = 3.

Figure 8 shows the magnitude and phase error of the integrated values at a reasonable reduced
frequency of k = 3 for various chordwise discretizations. The results show that for a reduced
frequency of k = 3 a minimum discretization of ∼40 panels is needed to keep the error in all
coefficients lower than 5%. As the highest error occurs for flap oscillatory motion and hinge
moment coefficient, a finer discretization of the control surface compared to the rest of the
wings surface and the wake could be a way to find a compromise between large model order
and overall accuracy. Since the error is not approaching exactly zero the influence of the wake
length is analyzed next.

3.1.4 Influence of the Wake Truncation Distance

The UVLM requires the modeling of the wake. Since the wake is theoretically infinite, the
wake has to be truncated in order to realize a model with a finite number of states. In the
following, the truncation distance is varied ranging from 1 to 65 chord-lengths c. By computing
the error of the coefficients at various wake-lengths to the coefficients calculated using the
maximum wake-length, the relative error is obtained. Figure 9 shows the maximum occurring
error (max(errCZ

,errCM
,errCH

)) in dependency of the wake truncation distance.
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Figure 9: Influence of wake truncation distance (in multiples of chord lengths c) on maximum occurring relative
difference (max(errCZ

,errCM
,errCH

)) between the UVLM and Theodorsen [15] in magnitude (left) and
phase (right).

The results in Fig. 9 show that a wake truncation distance of 40c is required to keep the error in
all derivatives lower than 1 %. This requirement is strongly driven by low frequency dynamics.
For higher frequencies, the wake truncation distance has only little influence on magnitude and
phase of the coefficients.

3.2 Induced Drag Calculations using the Nonlinear Model

The calculation of the unsteady drag within the UVLM is compared to analytical results for the
leading edge suction force formulated by Garrick [17]. Garrick formulated the leading edge
suction force for harmonic plunging and pitching motions. Simpson et al. [12] summarized the
formulation and compared a discrete time-stepping version of the UVLM to Garrick’s results.
The summary presented by Simpson et al. is used for the generation of the following reference
results.

The UVLM model with nonlinear force computation (first model, see Ch. 2.4) is used for
comparison. Time domain plunging (h = h0 sin(ωt)) and pitching (α = α0 sin(ωt)) simulations
are carried out for reduced frequencies of k = 0.1, 1 and 3 with plunging amplitudes of h0 =
0.01c
k

and a pitching amplitude of α0 = 1◦ for all reduced frequencies. The comparison includes
results from a classical discrete time stepping UVLM which is part of dAEDalus [8]. The
discretization and wake length are chosen as in the simulations with the linearized model (see
Ch. 3.1). Figure 10 shows the results for the induced drag coefficient Cd in plunging and
pitching motion plotted against the effective angle of attack αeff (with αeff = tan−1( h0

|V∞|) for
plunging motion).
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Figure 10: Unsteady induced drag for reduced frequencies of k = 0.1 (top), k = 1 (middle), k = 3 (bottom),
oscillatory plunging (left) and pitching (right) motion over angle of attack (αeff for plunge; α for pitch).

The results show that the proposed continuous time UVLM is accurately predicting the induced
drag calculated by the analytical formulation. It can be seen that the drag for plunging motion
is always negative (propulsive force). For harmonic pitching, the net force direction changes
with the reduced frequency. As expected, the performance of the time stepping formulation
regresses with increased frequency since the maximum spatial-temporal distance which can be
resolved by the chosen time-wise discretization is limited. The continous time formulation on
the other hand has neither a lower limit nor a discretization dependency for the time-step of the
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simulation. Thus, the continous time UVLM produces better results at high frequencies at the
same chordwise discretization than the classical time-stepping approach.

4 CONCLUSIONS AND OUTLOOK

An extension for the continuous time unsteady vortex lattice method has been presented ena-
bling aerodynamic modeling for arbitrary motion and control surface deflection including in-
duced drag calculation. The extension includes a formulation of the boundary conditions for
arbitrary three-dimensional motion and control surface rotation. Furthermore the calculation
of unsteady induced drag by a nonlinear extension of the force computation has been outlined.
The nonlinear state space realization was explained and a linearized version has been presented.
For validation of the method, simulations of both, the nonlinear as well as the linearized mo-
del have been carried out. The results for integrated coefficients and pressure distributions of
2D airfoils are in excellent agreement with the analytical methods. Furthermore the proposed
method shows advantages in predicting unsteady aerodynamic forces of high frequency motion
compared to the DLM and the classical time-stepping UVLM.

In general, it can be said that the unsteady vortex lattice method is a powerful tool for modeling
of incompressible and inviscid unsteady aerodynamics. The continuous time formulation in
particular can be used to decrease the computational costs for aeroelastic simulations. Current
studies found that the number of states can be drastically reduced using model order reduction
techniques [18]. In the future, the model will be used within dAEDalus for aeroelastic stability
and performance analysis. The possibility of calculating unsteady loads without the need of
approximations for time-domain simulation makes the method especially useful within aero-
servoelastic optimization algorithms. Other models formulated in time domain (for example
sensor and actuator models or control laws) can be easily integrated. Furthermore, the non-
linear aerodynamic state space formulation is suitable for the integration of further nonlinear
aerodynamic correction models (e.g. stall models).
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