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Abstract: This study focuses on assessing the influence of aerodynamic nonlinearity on
the flutter characteristics of a curved semi-infinite panel at transonic and low supersonic
Mach numbers. The fluid flow is modeled with compressible Euler equations and dis-
cretized using density-based streamline-upwind Petrov Galerkin finite element variational
form. The structure is analyzed using finite element discretization of a linear Timoshenko
beam model. The curved shape of the panel is defined by a half-sine bump with increasing
amplitude. Steady-state flow is calculated for this shape and a linearization about this
state is used to solve for the flutter mode using a small-disturbance stability eigenvalue
formulation. The flutter characteristics are studied for increasing height of the panel
curve at Mach 0.9, 1.1 and 1.5. At subsonic Mach numbers flow over the curved panel
creates a supersonic bubble and at a sufficiently large height changes the instability mode
from zero-frequency divergence to oscillatory flutter. At low supersonic Mach numbers
the increasing curve height creates a subsonic region over the panel with a change in the
composition of the resulting flutter mode. While the flutter speed is seen to monotonically
increase at Mach 1.1, large reductions are observed at Mach 1.5.

1 Introduction

Flutter at transonic and low supersonic Mach numbers continues to pose a challenge for
wing and airframe structural design [1]. Renewed interest in sustained supersonic and
hypersonic flight has further amplified this challenge for thermally-stressed structures.
Flight of a vehicle through the transonic regime after an extended heat soak at supersonic
Mach numbers requires careful consideration of aeroelastic stability of structures under
the influence of high temperatures. Bhatia and Beran [2,3] designed a thermally stressed
semi-infinite panel subject to transonic flutter constraints and identified that structural
nonlinearity can play an important role in design of such structures. Small imperfec-
tions in the panel can lead to quasi-static thermoelastic deformations, with influence on
the steady-state flow and dynamic instability characteristics. This study calculated the
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flutter modes assuming a uniform aerodynamic flow for the deformed panel, i.e. the struc-
tural quasi-static deformation included only the thermoelastic response while neglecting
aerodynamic loads. While this cited study included only the influence of structural nonlin-
earity in transonic flutter, the present paper extends this investigation with the objective
to understand the influence of aerodynamic nonlinearity on the flutter characteristics of
curved panels.

Dynamic stability of curved panels has been studied by Dowell [4, 5], Cheng and Mei [6],
Abbas, et al [7] and Cullers and McNamara [8]. All of these studies have focussed on
supersonic Mach numbers with various forms of linear/non-linear piston theory. Struc-
tural nonlinearity has also been included to account for the influence of curvature and
in-plane stresses. Dowell [4,5] found that cross-stream curvature stabilizes the panel with
strong dependence on in-plane edge restraint. All studies concluded that streamwise cur-
vature can considerably alter the dynamic stabilities of a panel. Cullers and McNamara [8]
found that high dynamic pressure loading can cause a thermally deformed panel to exhibit
snap-through response.

The present study focuses on assessing the influence of aerodynamic nonlinearity on dy-
namic stability of a curved semi-infinite panel at transonic and low supersonic Mach num-
bers. The fluid flow is modeled with compressible Euler equations and discretized using
density-based streamline-upwind Petrov Galerkin finite element variational form [9–11].
Some simplifying assumptions are made in order to maintain this focus. First, the struc-
ture is modeled with a linear Timoshenko beam theory. Second, a uni-directional coupling
is assumed to calculate the steady-state flow, such that the aerodynamic flow is calculated
about the curved panel shape, but it does not influence the quasi-steady panel deforma-
tion. These assumptions ensure that aerodynamics is the only source of nonlinearity in
the stability analysis. A linearization about this steady-state serves as the basis for V − g
flutter solution approach [9, 11].

The paper is organized as follows. The function spaces used in the finite element dis-
cretization are defined in Sec. 2.1. The structural model is described in Sec. 2.2, and the
fluid model is described in Sec. 2.3. An attempt has been made to maintain brevity of
discussion in order to reserve space for the presentation of results, which are presented in
Sec. 3. Finally, the conclusions are presented in Sec. 4.

2 Fundamental Equations

2.1 Finite Element Function Space

The plate structural model in this paper includes three variables, xs = {uz, θx, θy}T ,
which are the displacement along z−axis and rotations about x− and y−axes. Variable
θx is excluded for the beam model. The C0 continuous functional space for the structural
deformation is a complete polynomial with compact support over each element, Ωe, i.e.

Vh
s = {xs|xs ∈

(

C0(Ω)
)m

,xs|Ωe
∈ (Pk(Ωe))

m}, (1)

where, m = 2 for beams and m = 3 for plates, and k identifies the order of a complete
polynomial Pk(Ωe) over the element domain Ωe such that Ω =

⋃Nel

e=1 Ωe. The virtual
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Figure 1: A semi-infinite panel under the influence of aerodynamic flow on one side.

displacements, δxs, are additionally zero over the boundary with Dirichlet conditions
(ΓD), and the space is defined as

Wh
s = {xs|xs ∈

(

C0(Ω)
)m

,xs|Ωe
∈ (Pk(Ωe))

m ,xs|ΓD
= 0}. (2)

The fluid solution, xf, for a d−dimensional flow problem has d+ 2 variables. Hence, the
function space for the solution is defined as

Vh
f = {xf|xf ∈

(

C0(Ω)
)d+2

,xf|Ωe
∈ (Pk(Ωe))

d+2}. (3)

The solution is approximated over each element domain using the shape functions and the
vector of discrete coefficients. For example, uz(ξ) =

∑

i Ni(ξ)U
e
zi, i = 1, . . . , nshape, where,

Ni(ξ) is the ith shape function at element coordinate ξ, nshape is the number of shape
functions corresponding to a variable on the element, and U e

zi are the discrete coefficients
corresponding to the shape functions over the element domain Ωe. The same procedure is
used to discretize all variables (structural and fluid). The vector of all discrete coefficients
for the structural and fluid models are represented by Xs and Xf, respectively.

2.2 Structural Model

This paper considers the response of a semi-infinite panel exposed to aerodynamic flow
on one side (Fig. 1). It is assumed that the lower side of the panel is exposed to the
far-field pressure p∞. The aerodynamic shape is defined by a combination of the rigid
shape f(x) and the elastic deformation uz(x, t). The former is pre-defined while the latter
is identified from the stability eigensolution.

The panel is modeled using the Timoshenko beam theory that accounts for constant
transverse shear strain through the thickness of the beam. The governing equations in
the x, z−plane are characterized by the deformation, uz = uz(x, t) and rotation of normals
about the y−axis, θy = θy(x, t):

ux = zθy, (4)

ǫs(xs) = {ǫxx, γxy}T = Dsxs, (5)

xs = {uz, θy}T , (6)

Ds =

[

0 z∂/∂x
∂/∂x 1

]

, (7)

σs(xs) = {σxx, τxz}T = Cǫs(xs), (8)

C = diag(E,G). (9)
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The governing equations and discretizations are defined on the reference undeformed
configuration [11]. Note that this work assumes a unidirectional coupling for the steady-
state flow such that the structure is not influenced by the steady-state flow about the
shape defined by f(x). Hence, the structural steady-state condition is defined by the
undeformed state of the flat panel, implying that calculation of xs is not needed. A
more general fluid-structure interaction problem would require the solution of the coupled
steady-state equilibrium condition.

Assuming simple harmonic motion, xs(t) = exp(iωkt)ysk, variational statement for the
modal eigenproblem is stated as: find (ωk,ysk), with ysk ∈ Wh

s , such that for all δx ∈ Wh
s

− ω2
kρs

∫ h/2

−h/2

∫

Ω

δxsysk dΩ dz +

∫ h/2

−h/2

∫

Ω

ǫ(δxs)
Tσ(ysk) dΩ dz = 0, (10)

which is expressed in matrix form as

(

−ω2
kMss + Jss

)

Ysk = 0. (11)

The matrices are related to the variational statement as

δXT
s MssYsk = ρs

∫ h/2

−h/2

∫

Ω

δxT
s ysk dΩ dz, (12)

δXT
s JssYsk =

∫ h/2

−h/2

∫

Ω

ǫs(δxs)
Tσs(ysk) dΩ dz. (13)

2.3 Fluid Model

This section presents a brief discussion of the fluid-discretization procedure, while a more
thorough discussion can be found in the earlier work of Bhatia and Beran [9, 11]. The
governing equations are formulated on the original undeformed configuration and the
dynamic influence of structural motion is approximated through the slip-wall boundary
conditions.

The Euler equations are written in the conservative form as

∂xf

∂t
+

∂fi

∂xi

= 0 , (14)

fini|Γ = fn , (15)

where xf are the conservative solution variables, and the inviscid advection flux, fi =
fi(xf), are defined as

xf =







ρf
ρfv
ρfEf







, (16)

and

fi =







ρfvi
ρfvvi + pδij
vi(ρfEf + p)







, (17)
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with v = {v1, v2, v3} and Ef = cvT + vTv/2. Eq. (15) specifies the boundary-normal flux
which is used to define boundary conditions for symmetry, solid-wall and far-field bound-
aries. Eqs. (14)–(17) along with the equation of state p = RρfT provide the necessary
set of equations to calculate the state of fluid-flow. The speed of sound is calculated as,
a =

√
γRT =

√

γp/ρf, and the surface pressure coefficient is cp = (p − p∞)/q∞. The
advection-flux vectors are also expressed in a linearized form as fi = Aixf, where the
matrices Ai = ∂fi/∂xf are the advection-flux Jacobians.

2.3.1 Steady-State Solution

The variational statement for the steady-state solution is written as [9]: find x0
f ∈ Vh

f

such that for all φ ∈ Vh
f

∫

Ω

φT

(

∂x0
f

∂t
+

∂fi

∂xi

)

dΩ+

Nel
∑

e=1

[
∫

Ωe

∂φT

∂xi

Aiτ (x
0
f )

(

∂x0
f

∂t
+

∂fi

∂xi

)

dΩe +

∫

Ωe

δ(x0
f )
∂φT

∂xi

∂x0
f

∂xi

dΩe

]

= 0 , (18)

where, Nel is the number of elements. The last term in Eq. (18) is called the discontinuity-
capturing term, and it adds isotropic artificial viscosity in regions of high solution gradient,
such as shocks. τ (x0

f ) and δ(x0
f ) are the intrinsic time matrix and dissipation coefficient

for the discontinuity capturing operator, respectively [9]. Using integration-by-parts, the
variational statement is written as

∫

Ω

φT ∂x
0
f

∂t
dΩ−

∫

Ω

∂φT

∂xi

fidΩ +

∫

Γ

φTfndΓ+

Nel
∑

e=1

[
∫

Ωe

∂φT

∂xi

Aiτ (x
0
f )

(

∂x0
f

∂t
+

∂fi

∂xi

)

dΩe +

∫

Ωe

δ(x0
f )
∂φT

∂xi

∂x0
f

∂xi

dΩe

]

= 0 , (19)

This constitutes a nonlinear system of equations for solution of the steady-state flow con-
dition subject to the rigid panel curvature. The far-field and slip-wall boundary conditions
are implemented through the third-term in Eq. (19), where fn is evaluated for these con-
ditions. The characteristics are used to split the Jacobian for incoming and outgoing
fluxes at the far-field boundary [9]. At the slip-wall, the boundary-normal flux is written
as

fn|wall = fin̂i|wall = v · n̂fwall,1 + fwall,2, (20)

where, fwall,1 = {ρf, ρfv1, ρfv2, ρfv3, (ρfEf+p)}, and fwall,2 = {0, pn1, pn2, pn3, 0}. The wall-
normal velocity, v · n̂, is replaced by using the flow tangency condition. If deformation
or a rigid shape produces a change in the surface normal, dn̂, the tangency condition is
written as

v · (n̂+ dn̂) =
∂u

∂t
· (n̂+ dn̂). (21)

Then simple algebraic manipulation gives us v · n̂ = ∂u
∂t

· (n̂+ dn̂)− v · dn̂, where dn̂ is
obtained from a function describing the rigid panel curvature.
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2.3.2 Small-Disturbance Solution

Once x0
f is available, it is assumed that the system can experience small disturbances x∆

f

so that the complete solution is defined as xf = x0
f + x∆

f , where

x∆
f =







∆ρf
∆(ρfv)
∆(ρfEf)







. (22)

The small-disturbance Euler equation is written as

∂x∆
f

∂t
+

∂f∆
i

∂xi

= 0 . (23)

Using Eq. (17), the small-disturbance inviscid flux is written as

f∆
i =







vi∆ρf + ρf∆vi
(ρf∆vi + vi∆ρf)v + ρfvi∆v +∆pδij

(ρfEf + p)∆vi + (Ef∆ρf + ρf∆Ef +∆p)vi







, (24)

where the small-disturbance quantities are defined as, ∆vi = (∆(ρfvi)− vi∆ρf)/ρf, ∆Ef =
(∆(ρfEf) − Ef∆ρf)/ρf, ∆k = v · ∆v, ∆T = (∆Ef − ∆k)/cv, ∆p = R(T∆ρf + ρf∆T ),
∆a =

√

γR/T∆T/2. The small-disturbance flux is expressed in a linearized form as
f∆
i = Aix

∆
f .

The boundary-normal far-field flux, f∆
n |∞, is evaluated as

f∆
n |∞ = A(+)x∆

f +A(−)x∆
f,∞ = A(+)x∆

f , (25)

where, x∆
f,∞ = 0, and the flux Jacobians for outgoing and incoming fluxes, A(+) and A(−),

are evaluated from the Riemann invariants at far-field boundary.

The boundary-normal flux, f∆
n |wall, on a solid-wall is obtained using Eq. (24) and is

expressed as
f∆
n |wall = f∆

i ni|wall = ∆v · n̂f∆
wall,1 + f∆

wall,2 , (26)

where f∆
wall,1 = {ρf, ρfv1, ρfv2, ρfv3, (ρfEf + p)}, and f∆

wall,2 = {0,∆pn1,∆pn2,∆pn3, 0}. An
expression for ∆v · n̂ is obtained from the perturbation of Eq. (21):

(v +∆v) · (n̂+ dn̂+∆n̂) =
∂(u+∆u)

∂t
· (n̂+ dn̂+∆n̂), (27)

where, ∆n̂ is the perturbation in the surface normal and ∆u is the perturbation in
structural deformation. Then, simple algebraic manipulations leads to ∆v · n̂ = ∂(u+∆u)

∂t
·

(n̂+ dn̂+∆n̂)− v · (n̂+ dn̂+∆n̂)−∆v · (dn̂+∆n̂). Finally, neglecting the high-order
terms in the perturbation (∆v ·∆n) and using Eq. (21) simplifies the expression to

∆v · n̂ =
∂u

∂t
·∆n̂+

∂∆u

∂t
· (n̂+ dn̂)− v ·∆n̂−∆v · dn̂ (28)

The first two terms on the right-hand-side of Eq. (28) depend on the structural velocity
and its perturbation and the last two term depends on the structural deformation and its
perturbation through the surface normal.
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The variational statement for the small-disturbance solution is written as [9]: find x∆
f ∈ Vh

f

such that for all φ ∈ Vh
f

∫

Ω

φT ∂x
∆
f

∂t
dΩ−

∫

Ω

∂φT

∂xi

f∆
i dΩ +

∫

Γ

φTf∆
n dΓ+

Nel
∑

e=1

[
∫

Ωe

∂φT

∂xi

Aiτ (x
0
f )

(

∂x∆
f

∂t
+

∂f∆
i

∂xi

)

dΩe +

∫

Ωe

δ(x0
f )
∂φT

∂xi

∂x∆
f

∂xi

dΩe

]

= 0 , (29)

The values for τ (x0
f ) and δ(x0

f ) in Eq. (29) assume their numerical values from the stead-
state solution. It should be noted that even in the absence of shocks in the steady-state
flow, any discontinuity in the boundary conditions of the small-disturbance problem can
propagate into the analysis domain. Such cases can benefit from updating the values of δ
using the small-disturbance solution. However, in the present study of small-disturbance
solutions, δ(xf) assumes its value from the steady-state solution, which is zero due to the
uniform flow condition for steady-state flow.

Eq. (29) is expressed in matrix-form as

Mff
dX∆

f

dt
+ JffX

∆
f + J0

fsX
∆
s + J1

fs

dX∆
s

dt
= 0 , (30)

where Jff = Jff,flux+Jff,wall+Jff,∞ and the individual matrices are related to the variational
statement as

ΦTMff
dX∆

f

dt
≡

∫

Ω

φT ∂x
∆
f

∂t
dΩ +

Nel
∑

e=1

∫

Ωe

∂φ

∂xi

T

Aiτ (x
0
f )
∂x∆

f

∂t
dΩe , (31)

ΦTJff,fluxX
∆
f ≡ −

∫

Ω

∂φT

∂xi

f∆
i dΩ +

Nel
∑

e=1

[
∫

Ωe

∂φ

∂xi

T

Aiτ (x
0
f )
∂f∆

i

∂xi

dΩe +

∫

Ωe

δ(x0
f )
∂φ

∂xi

∂x∆
f

∂xi

dΩe

]

,(32)

ΦTJff,wallX
∆
f ≡

∫

Γwall

φTf∆
wall,2 dΓwall , (33)

ΦTJff,∞X∆
f ≡

∫

Γ∞

φTA(+)x∆
f dΓ∞ , (34)

ΦTJ0
fsX

∆
s ≡ −

∫

Γwall

φTv ·∆n̂f∆
wall,1 dΓwall , (35)

ΦTJ1
fs

dX∆
s

dt
≡

∫

Γwall

φT∆
∂u

∂t
· n̂f∆

wall,1 dΓwall . (36)

Jacobians for coupling terms in Eqs. (35) and (36) are not explicitly calculated in this
implementation. Instead their matrix-vector products are evaluated and used. This is
discussed in more detail in the following section.

The procedure for fluid-structure coupling and estimation of stability roots is detailed in
the earlier work by Bhatia and Beran [10,11].

3 Results

This section presents the stability analysis for a semi-infinite panel at Mach 0.9, 1.1 and
1.5 with varying panel curvature defined by f(x) = η sin(πx/L). The results include
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Figure 2: Computational mesh used for steady-state and small-disturbance flow solution.

a plot of flutter speed, VF , and flutter frequency, ωF , and modal participation of the
primary instability for increasing values of non-dimensional height η = H/L. For each
Mach number the steady flow and instability data are presented for a small value of
η = 0.001, which closely matches the previously published results about a flat panel (η =
0) [10,11]. The aerodynamic nonlinearity increases with the value of η and causes a change
in composition of the flutter mode. In order to quantify the influence of aerodynamic
nonlinearity the steady-state Mach number is plotted over the panel surface for several
values of η. The Mach number plot helps in identifying the presence of shocks and the
sub-/supersonic nature of flow. A second plot of (M −M∞)/η ·L approximates the slope
dM(x, h)/dH and provides a clear indication of the departure from linearity, since a linear
flow response will lead to a constant value of this slope.

In addition to these plots, the steady-state density contours are presented with a sonic line
(when applicable) along with the panel deformation and surface density perturbation for
the critical panel instability. These two quantities are scaled by the maximum absolute
value of the real part of structural mode, maxRe(|uy|). Since the perturbation data is
obtained from an eigenvector, any scaling of this quantity is also a solution. Contour
plots of the scaled density perturbation in the flow domain are also presented to show the
propagation of the perturbations in the flow domain.

Details of the panel length and material are listed in Table 1. The computational domain
(Fig. 2) for the fluid flow extends 5 chord-lengths beyond the panel along both the x−
and z−axes. The domain is discretized using a grid of 150x60 bi-linear elements with
30 elements on the panel and 60 elements between the panel and far-field boundaries in
either direction. The elements on the panel are uniformly sized along the x−axis, while
mesh density is varied from the far-field to the panel such that the element dimension at
the far-field boundary is 20 times that at the panel.

All computations are performed with MAST [11, 12]. A direct sparse solver is used to
solve the structural system of equations. An iterative GMRES solver with ILU(0) precon-
ditioner is used for the steady-state fluid-equations, while the n complex-valued system
of equations are converted into 2n real-valued system of equations and solved using an
ILU(0) block-preconditioned linear solver [13].

3.1 M∞ = 0.9

Given the proximity of M∞ = 0.9 to the sonic flow condition, the flow is seen to be more
sensitive to panel curvature than that observed in the previous section for M∞ = 0.7.

8



IFASD-2017-018

Table 1: Physical parameters for panel and ambient fluid properties

Parameter Value
Fluid

Far-field density 1.35 kg/m3

Far-field temperature 300 K
Specific heat at constant pressure (cp,f) 1003 J/kg/K
Ideal gas constant (R) 287 J/kg/K
Specific heat ratio (cp,f/cv,f) 1.4

Structural
Young’s modulus (Es) 72 GPa
Poisson ratio (ν) 0.33
Density (ρs) 2700 kg/m3

Length (L) 0.3 m
Section thickness (h) 0.0015 m
Mass ratio (µ = ρfL/ρsh) 0.1
Section rigidity (D = Esh

3/12(1− ν2)) 22.7

The surface Mach number for various values of η (see Fig. 3(a)) shows the formation of
a small supersonic region over the panel for η = 0.01 with a shock at approximately 65%
chord location. Increasing η results in a stronger shock located further downstream and
for the case of η = 0.05, the shock is at the trailing edge of the panel. The change in
surface Mach number with respect to H in Fig. 3(b) shows that the flow departs from
linear condition at η = 0.01.

The influence of aerodynamic nonlinearity on the flutter characteristics is evident from
the plots in Fig. 4. Increasing η initially results only in a reduction of flutter speed while
keeping the instability as a single degree-of-freedom zero frequency divergence mode. The
appearance of a shock at η = 0.01 results in a monotonic increase of the instability speed
and changes the divergence mode composition to the first two panel bending modes. At
η = 0.02, the instability mode changes from divergence to flutter. While the flutter mode
is a combination of the first two panel bending modes with a dominant first mode, the
importance of the second bending mode continues to increase monotonically.

The contour plots for steady-state density and its perturbation in the divergence mode
at η = 0.001 (Fig. 5) show that a panel deformation into the flow causes the flow to
accelerate with a reduction in density, and vice-a-versa for deformation away from the
flow.

The supersonic region over the curved panel at η = 0.02 is identified by the sonic line in
Fig. 6(a). The instability in this case is a zero frequency divergence mode. The panel
deformation and the corresponding density perturbation are shown in Fig. 6(c). Since the
maximum value of the perturbation is dictated by the resolution at the shock location, the
y−axis limits of this plot are chosen to focus on the density perturbation on the entire
panel. The mixed flow significantly alters the nature of perturbations on the panel in
comparison with the previous case at η = 0.001.

At η = 0.03 the size of the supersonic bubble increases (Fig.7(a)) and changes the in-
stability from divergence to flutter. The panel deformation and corresponding surface
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Figure 3: Surface Mach number and change with respect to H for increasing value of η at M∞ = 0.9
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(c) Modal participation
Figure 4: Influence of η on flutter speed, flutter frequency and modal participation at M∞ = 0.9.

density perturbations are shown in Figs. 7(b) and 7(c), respectively. The contour plots of
density perturbation in Fig. 8 show an interesting trend. While the perturbations in the
supersonic bubble are able to propagate along the directions of the characteristics, which
are dictated by the local Mach number, outside of that the perturbation waves propagate
in all directions shown by the alternating red and blue contours.

3.2 M∞ = 1.1

Any curvature at supersonic Mach numbers creates a compression shock for positive sur-
face slope (along the flow direction) and an expansion of the flow for negative slope. The

(a) Steady-state density
contour

(b) Divergence density per-
turbation. Red (blue) im-
plies positive (negative) per-
turbation.
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(c) Divergence Mode

Figure 5: Steady-state solution and divergence mode for M∞ = 0.9 at η = 0.001.
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(a) Steady-state density
contour

(b) Divergence density per-
turbation. Red (blue) im-
plies positive (negative) per-
turbation.
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(c) Divergence Mode

Figure 6: Steady-state solution and divergence mode for M∞ = 0.9 at η = 0.02.
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(c) Surface density perturbation

Figure 7: Steady-state solution and flutter mode for M∞ = 0.9 at η = 0.03. The normalized panel
deformation and surface density perturbation are plotted for one cycle of the flutter mode.

(a) phase = 0◦ (b) phase = 60◦ (c) phase = 120◦

(d) phase = 180◦ (e) phase = 240◦ (f) phase = 300◦

Figure 8: Contour plots of density perturbation at multiple instances in the flutter mode for M∞ = 0.9
at η = 0.03. Red (blue) implies positive (negative) perturbation.
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Figure 9: Surface Mach number and change with respect to H for increasing value of η at M∞ = 1.1

reduction in Mach number due to the compression shock for high values of η can create
pockets of subsonic region. This is clearly seen in Fig. 9(a) where the shock at the leading
edge for η = 0.005 reduces the Mach number to 1. For higher values of η a normal shock
ahead of the panel creates a region of subsonic flow. The slope of change in Mach number
with respect to H (Fig. 9(b)) shows the influence of nonlinearity around the leading edge
at η = 0.005, with a larger region of nonlinear influence around the leading edge.

The influence of this nonlinearity is visible in Fig. 10. While the flutter speed increases
monotonically with η, the flutter frequency reduces till η = 0.01 and then increases as the
second panel bending mode starts to dominate the panel dynamics.

The steady-state density contour at η = 0.001 shows the compression and expansion
shocks in Fig. 11(a). The panel flutter mode is plotted at multiple instances during the
period of the instability in Fig. 11(b). The corresponding surface density perturbations
(Fig. 11(c)) and their contour plots (Fig. 12) show that the perturbations are convecting
along the characteristic directions in the flow.

The steady-state density contour at η = 0.01 shows a subsonic region around the panel
leading edge (Fig. 13(a)). The flutter mode is dominated by the first panel bending
mode (Fig. 13(b)) and the corresponding surface density perturbations show significant
amplitudes at the shock location (Fig.13(c)). The density perturbation contour plots in
Fig. 14 show that the perturbations around the leading edge propagate upstream till they
reach the normal shock, at which point they propagate along the shock.

A similar, but more intensified response can be seen for η = 0.03 where the normal shock
has moved further upstream (Fig. 15(a)) with a larger subsonic region. While the Mach
number reduces around the leading edge, the flow is seen to accelerate after 50% chord
location. This acceleration of the flow considerably changes the direction of the local
characteristics and makes a stronger shock at the trailing edge. The panel flutter mode
has a significant contribution from the second panel bending mode (Fig. 15(b)). The
density perturbations (Fig. 16) in the subsonic region propagate upstream towards the
normal shock, after which they convect along the shock. The modified characteristics
around the trailing edge result in stronger perturbations that propagate along the trailing
edge shock.
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(c) Modal participation
Figure 10: Influence of η on flutter speed, flutter frequency and modal participation at M∞ = 1.1.
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(c) Surface density perturbation

Figure 11: Steady-state solution and flutter mode for M∞ = 1.1 at η = 0.001. The normalized panel
deformation and surface density perturbation are plotted for one cycle of the flutter mode.

(a) phase = 0◦ (b) phase = 60◦ (c) phase = 120◦

(d) phase = 180◦ (e) phase = 240◦ (f) phase = 300◦

Figure 12: Contour plots of density perturbation at multiple instances in the flutter mode for M∞ = 1.1
at η = 0.001. Red (blue) implies positive (negative) perturbation.
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(a) Steady-state density
contour. Solid line indicates
sonic line.
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(c) Surface density perturbation

Figure 13: Steady-state solution and flutter mode for M∞ = 1.1 at η = 0.01. The normalized panel
deformation and surface density perturbation are plotted for one cycle of the flutter mode.

(a) phase = 0◦ (b) phase = 60◦ (c) phase = 120◦

(d) phase = 180◦ (e) phase = 240◦ (f) phase = 300◦

Figure 14: Contour plots of density perturbation at multiple instances in the flutter mode for M∞ = 1.1
at η = 0.01. Red (blue) implies positive (negative) perturbation.
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(a) Steady-state density contour
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(b) Flutter Mode
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(c) Surface density perturbation

Figure 15: Steady-state solution and flutter mode for M∞ = 1.1 at η = 0.03. The normalized panel
deformation and surface density perturbation are plotted for one cycle of the flutter mode.

(a) phase = 0◦ (b) phase = 60◦ (c) phase = 120◦

(d) phase = 180◦ (e) phase = 240◦ (f) phase = 300◦

Figure 16: Contour plots of density perturbation at multiple instances in the flutter mode for M∞ = 1.1
at η = 0.03. Red (blue) implies positive (negative) perturbation.
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Figure 17: Surface Mach number and change with respect to H for increasing value of η at M∞ = 1.5

3.3 M∞ = 1.5

Steady supersonic flow at M∞ = 1.5 over the curved panel experiences compression
from the leading-edge to semi-chord and expansion from semi-chord to the trailing edge
(Fig. 17(a)). The compression shock creates a subsonic region around the leading edge
for η = 0.05 and this leads to departure from linear behavior, as seen in Fig. 17(b).

The flutter characteristics at M∞ = 1.5 are found to be extremely sensitive to curvature
in the panel. Increasing η to 0.03 causes a drop in the flutter speed to 25% of its value
for a flat panel (Fig. 18(a)). The critical mode for a flat panel is the high-frequency third
panel bending mode. This quickly changes to a mode composed of the first two panel
bending modes (Fig. 18(c)) at a considerably lower frequency.

The steady-state density contour at η = 0.001 show the compression and expansion shocks
along the characteristic lines (Fig. 19(a)). For such a small curvature the flutter mode
retains the same characteristic as that for the flat panel, which is a single degree-of-freedom
mode primarily composed of the second and third panel bending modes, with a dominant
third mode. The surface density perturbation in the flutter mode (Fig. 19(c)) is seen
to be proportional to the panel deformation (Fig. 19(b)), which is a trait of supersonic
flows. The density perturbation contour plots in Fig. 20 show that the perturbations are
propagating along the characteristic directions.

The panel curvature at η = 0.01 creates a compression and expansion shock structure
(Fig. 21(a)) that changes the flutter instability to a composition of the first and second
panel bending modes. It is noted that the two bending modes are in-phase, which makes
the flutter mode appear as a single degree-of-freedom mode (Fig. 21(b)). The correspond-
ing surface density perturbation are proportional to the local panel slope (Fig. 19(c)). The
contours show propagation of the density perturbation along the characteristics in Fig. 22.

3.4 Discussion

The results presented here show that flutter of curved panels at transonic Mach numbers
is significantly influenced by aerodynamic nonlinearity. It is important to put these results
into a perspective that clearly states the involved assumptions and their implications.

Calculation of the steady-state flow assumes a rigid aerodynamic shape defined by a half-
sine bump, and the influence of aerodynamic flow on steady-state panel deformation is
neglected. This is a uni-directional coupling for the steady-state flow. This simplification
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Figure 18: Influence of η on flutter speed, flutter frequency and modal participation at M∞ = 1.5.
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(c) Surface density perturbation

Figure 19: Steady-state solution and flutter mode for M∞ = 1.5 at η = 0.001. The normalized panel
deformation and surface density perturbation are plotted for one cycle of the flutter mode.

was introduced due to the stated purpose of solely focussing on the influence of aerody-
namic nonlinearity on flutter speed. It is expected that steady-state panel deformation
due to a bi-directional coupling will reduce the curvature observed by the aerodynamic
flow. This will likely reduce the severity of the results seen here, although the influence
will depend on the dynamic pressure at which instability occurs. Furthermore, an appro-
priate modeling of this coupling would require that structural nonlinearity due to in-plane
stresses be considered. Snap-through behavior has been reported for cases at high dy-
namic pressure, which is typically associated with higher Mach numbers that those studied
here.

The instability analysis assumes small-disturbances about the steady-state condition,
which helps in identifying the Hopf bifurcation point. Bhatia and Beran [10, 11] have
demonstrated that such an analysis provides credible results that compare favorably with
previously reported instability studies using nonlinear time-accurate methodology. How-
ever, it can also be argued that when the amplitude of oscillation of a flat panel (η = 0) is
allowed to increase in a nonlinear dynamic analysis, the resulting aerodynamic nonlinear-
ity can influence the stability characteristics in a manner shown here. Such a response,
however, will involve shocks that appear and disappear during each cycle of oscillation.
The discussion of such dynamics will require a nonlinear time-periodic context involv-
ing concepts such as sub-critical or super-critical bifurcation. Accurate analysis of such
responses will also require the inclusion of structural nonlinearity as large transverse de-
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(a) phase = 0◦ (b) phase = 60◦ (c) phase = 120◦

(d) phase = 180◦ (e) phase = 240◦ (f) phase = 300◦

Figure 20: Contour plots of density perturbation at multiple instances in the flutter mode for M∞ = 1.5
at η = 0.001. Red (blue) implies positive (negative) perturbation.

(a) Steady-state density contour
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(c) Surface density perturbation

Figure 21: Steady-state solution and flutter mode for M∞ = 1.5 at η = 0.01. The normalized panel
deformation and surface density perturbation are plotted for one cycle of the flutter mode.
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(a) phase = 0◦ (b) phase = 60◦ (c) phase = 120◦

(d) phase = 180◦ (e) phase = 240◦ (f) phase = 300◦

Figure 22: Contour plots of density perturbation at multiple instances in the flutter mode for M∞ = 1.5
at η = 0.01. Red (blue) implies positive (negative) perturbation.

formation will cause the generation of large in-plane stresses.

Finally, the context of this paper only includes inviscid flow. The interaction of boundary
layers and shocks in transonic flow can lead to flow separation and shock oscillation, which
is outside the scope of this paper.

4 Conclusions

The results shown here demonstrate that aerodynamic nonlinearity in inviscid transonic
flow over a curved panel can change the nature of instability from divergence to flutter,
and also increase or decrease the speed at which instability occurs. For subsonic flow the
instability speed reduces before increasing with the appearance of a supersonic bubble
over the panel. At M∞ = 1.1 while the flutter speed increases monotonically with the
occurrence of a subsonic region behind a normal shock, the flutter mode changes compo-
sition from a multiple degrees-of-freedom to a single degree-of-freedom flutter mode. At
M∞ = 1.5 the flutter speed reduces by 68% before increasing again and at M∞ = 2.0 the
flutter speed shows an 80% drop from the value for a flat panel.

Future work will include the bi-directional coupling to calculate the steady-state condition
and its influence on dynamic instability in a small- and large-disturbance context.
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