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Abstract: In this paper, the application of adaptive control is demonstrated for highly flexible
aircraft in a dynamic gain scheduling approach. For that, an adaptive control law is designed
for the stability augmentation system, taking as reference model the closed-loop dynamics pro-
vided by a baseline controller. Global stability is demonstrated by the Lyapunov direct method.
Closed-loop nonlinear simulations are performed. The performance of the control system is
evaluated considering the aircraft in high loading operations, specifically in accelerated turning
maneuvers. Overall, this control strategy proved to overcome instabilities arising when linear
control is applied, while conferring the aircraft adequate time response.

1 INTRODUCTION

The interest in the class of unmanned vehicle known as High-Altitude and Long-Endurance
(HALE) aircraft has been growing in the lastest years. The mission profile of a HALE aircraft
involves cruising at very high altitudes, and very-long endurance flights (during days, weeks
and even months), whether for military or civilian applications [1, 2]. The most recent example
of application of a HALE aircraft is Aquila, a solar-powered airplane designed by the Facebook
Connectivity Lab to be used to bring affordable internet in hardest-to-reach places. When com-
plete, Aquila will be able to circle a region up to 60 miles in diameter, beaming connectivity
down from an altitude of more than 60.000 feet and flying for up to three months at a time [3].

The problem is that, due the mission requirements, the HALE aircraft have become so lightweight
and flexible that the vehicle may invariably undergo large deformations during operation, ex-
hibiting a nonlinear behaviour, not only due to Euler angles and gravity force decomposition,
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but more importantly due to structural and aerodynamic responses. For this reason, nonlinear
aerodynamic and structural modelling is necessary, and linear control design techniques are no
longer adequate [4]. In recent years, several techniques to modeling dynamics of very flexible
aircraft have been proposed [5–7]. At the same time, differente testbeds have been built in order
to validate such models [8]. The most recente of them is the University of Michigan X-HALE,
which is currently being operated at ITA in Brazil.

Very flexible aircraft are caracterized by very low frequencies of their natural structural vibra-
tion modes and, as a result, a strong and dangerous coupling between the structural dynamics
and the rigid-body flight dynamics occurs, giving rise to a series of challenges for flight control
law design.

Adaptive control seems to be an appropriate approach for highly flexible aircraft, since with
large deformations the plant to be controlled varies significantly. Those variations can occur
due to several factors such as actuator anomalies during long-endurance flights, dihedral angle
changes, model uncertainties and gust wind inflows, and adaptive control should be able to
overcome this adversities.

The interest in adaptive control emerged in the aerospace industry in the early 1950s motivated
by the design of autopilots for aircraft that operated in a wide flight envelope, with large range
of speeds and altitudes. Different flight conditions cause the aircraft dynamics to change sig-
nificantly [9]. A notorious case-study was reported by Dydek et al. [10], where the hypersonic
vehicle X-15-3 designed by NASA makes use of an adaptive control law. The X-15-3 was one
of the first aircraft to present an adaptive controller, but a fatal accident occurred on November
15th, 1967. The experiment revealed that a satisfactory adaptive control law can be designed
without having accurate information about the aircraft parameters and without an analytical
proof of stability, although the necessity of the latter was reinforced by the fatal accident. In the
same paper, a new approach is proposed, in which the asymptotic stability is ensured. The new
results showed that the resulting controller would be able to reach performance and stability,
even in the presence of similar failures that led to the accident of X-15-3.

Ponnusamy and Guibe [11] proposed an adaptive output feedback control design based on a
flexible aircraft model considering a simply rigid reference model. The presented results are
promising and attested the efficiency of setting up a simple reference model, even for highly
complex models.

To deal with uncertainties in the model, Qu, Lavretsky, and Annaswamy [12] design an adaptive
controller to be added to a baseline linear one, developed for a very flexible aircraft flying under
nominal conditions. Global stability and asymptotic tracking of the overall adaptive controller
designed was ensured and validated using nonlinear simulations.

In this paper, the advantages of adaptive control for very flexible aircraft will be demonstrated
for the X-HALE aircraft in a dynamic gain scheduling approach. For that, the aircraft will
be considered in high loading operations, specifically in accelerated turning maneuvers. The
adaptive law will be designed based on the Lyapunov stability theorems. Nonlinear simulations
in closed-loop demonstrated that while linear control fails in assuring stability for the velocity
range of interest, the adaptive controller stabilises the plant without loosing performance.
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2 THEORICAL DEVELOPMENT

2.1 Problem description

If the true parameters of a real plant are substantially different from the assumed ones in the
control law design process, system instabilities may occur. An example is presented in Fig. 1,
where a stability augmentation system (SAS) coupled with a robust linear controller designed
for velocity, altitude, sideslip and roll angle tracking of a highly flexible aircraft fails for a
variation of 4m/s, probably due to nonlinearities present in the plant [13].
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Figure 1: Divergence of the control system for velocity tracking of a very flexible aircraft.

Particularly in the aforementioned example, the stability augmentation inner-loop designed for
the operating point of 14m/s becomes unstable when the vehicle approached the flight condi-
tion of 18m/s. Even when the system remains stable, its closed-loop tracking performance may
deteriorate to a point of becoming unacceptable.

It is known that a wide range of linear control techniques can be employed to address this issue,
such as robust control, that explicitly deals with system’s uncertainty, or gain schedule which is
a strategy for controlling systems whose dynamics change with time or operating condition [14].

The problem with the linear approach is that it is only valid for small disturbances around an
equilibrium point. In the case of highly flexible aircraft, however, this small disturbances can
be sufficiently large to change significantly the plant and, therefore, the assumption of linearity
may no longer be valid.

Consider the classical tracking problem as illustred in Fig. 2 [14]. The closed-loop plant control
signal is:

u = uc − usas (1)

where uc corresponds to the compensator output control signal, designed to keep small the
compensator input tracking error signal (ey), which in turn is defined by a unity-gain outer loop
that feeds the performance output (ytrck) back and subtracts it from the reference command
(ycmd). The performance output is defined by the tracking output selection matrix Ctrck.

The inner-loop corresponds to the SAS signal usas, defined as:

usas = KTysas = KTCsasy (2)
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Figure 2: Block diagram of the classical tracking problem. Adapted from [14].

designed to regulate the output of the system to an equilibrium point, ensuring closed-loop
stability and desirable time-response characteristics. Csas corresponds to the SAS measurement
selection matrix.

The main idea behind the model reference adaptive control (MRAC) consists in designing a
controller whose SAS gains KT are updated online using adaptive law. The adjustments of
the gains is accomplished in real-time based on the difference between the ideal response of
a closed-loop reference model and the real response of the plant. Both responses are due to
external commands ycmd, giving rise to a state tracking error (e) which subsequently is sent to
the adaptive law. Finally, the controller computes the estimated SAS gains K̂T based on the
system output, state tracking error and design parameters. A block diagram of the MRAC is
presented in the Fig. 3.
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Figure 3: Block diagram of the MRAC applied in a tracking problem.

In the figure above:
ûsas = K̂Tysas = K̂TCsasy (3)

and the closed-loop control signal, in turn, is:

u = uc − ûsas (4)
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The reference model can be, for example, a baseline closed-loop model of the plant, for a
specific flight condition where the control law has been calculated, exhibiting desirable time-
response characteristics.

In this way, the adaptive controller acts on the inner-loop and force the system output ytrck

to track any bounded time-varying command signal ycmd keeping the performance of the real
closed-loop response similar to the reference model, while operating in the presence of uncer-
tainties and unknown variations of plant parameters. All this is accomplished ensuring bounded
state tracking error.

Some aspects to be noted are: first, in the approach here proposed, it is assumed that full state
measurement is available; second, the adaptive control acts on the inner-loop but has no direct
effect on the outer-loop. Once the latter usually is designed using linear control theory (as will
be the case in this work) the complete closed-loop system will still depend on the hypothesis
of small perturbations to comply with the principles of linearity. Even if the design of the
outer-loop lays on linear control theory, thus assuming small elastic deformations, the adaptive
control approach proposed may use a slightly flexible aircraft model as the reference model.
Since the inner-loop will act to adjust the aircraft behaviour to that of the reference model, a
highly flexible aircraft is expected at some extent to behave as a slightly flexible aircraft.

2.2 MRAC design

Consider a class of multi-input multi-output (MIMO) uncertain systems with the following
form:

ẋ = Ax + BΛu (5)
y = Cx (6)

where x ∈ Rn×1 is the system state vector, u ∈ Rm×1 is the control input, y ∈ Rp×1 is the
system output vector, A ∈ Rn×n is the state matrix, constant and unknown, B ∈ Rn×m is the
input matrix, constant and known, Λ ∈ Rm×m is a constant diagonal unknown matrix with
strictly positive diagonal elements and C ∈ Rp×n is the output matrix known and constant.

The uncertainty in Λ is introduced to model possible control failures or modeling errors, in the
sense that there may exist uncertain control gains or the designer may have incorrectly estimated
the system control effectiveness [9].

First, it is defined an ideal control solution, as if the unknown parameters aforementioned (A
and Λ) were known. For this, suppose a traditional linear control structure similar to the pre-
sented in Fig. 2, where the SAS gains KT as well as the compensator model were designed
using some linear control technique, so that the ideal closed-loop system presents desired sta-
bility and performance characteristics. Assuming the following controller model:

ẋc = Fxc + Gey (7)
uc = Hxc + Jey (8)

where xc ∈ Rnc×1 is the compensator state and F ∈ Rnc×nc , G ∈ Rnc×ptrck , H ∈ Rm×nc and
J ∈ Rm×ptrck are its state-space realization, it is easy to verify from Equations (1), (2) and (5-8)
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that the closed-loop system is given by:

ẋ =
(
A−BΛJCtrckC

)︸ ︷︷ ︸
Afw

x−BΛKTCsasCx + BΛHxc + BΛJycmd, (9)

ẋc = Fxc −GCtrckCx + Gycmd. (10)

In augmented matrix form, the system can be written as:[
ẋ
ẋc

]
=

[
Afw BΛH

−GCtrckC F

]
︸ ︷︷ ︸

Aa

[
x
xc

]
︸ ︷︷ ︸

xa

−
[

B
0nc×m

]
︸ ︷︷ ︸

Ba

ΛKTCsas

[
C 0p×nc

]︸ ︷︷ ︸
Ca

[
x
xc

]

+

[
BΛJ

G

]
︸ ︷︷ ︸

Bref

ycmd, (11)

or in shorter form:

ẋa = Aaxa −BaΛKTCsasCaxa + Brefycmd, (12)
y = Caxa. (13)

Considering the ideal solution as the reference model, i.e., doing xa = xref and y = yref :

ẋref =
(
Aa −BaΛKTCsasCa

)︸ ︷︷ ︸
Aref

xref + Brefycmd = Arefxref + Brefycmd, (14)

yref = Caxref , (15)

where xref ∈ R(n+nc)×1 and yref ∈ Rp×1 are the reference state and output vectors, respectively.
From Equations (7-9) it is straightforward that ey ∈ Rptrck×1, uc ∈ Rm×1, KT ∈ Rm×psas ,
Csas ∈ Rpsas×p, Ctrck ∈ Rptrck×p and ycmd ∈ Rptrck×1.

In Equation (14), the expression:

Aref =
(
Aa −BaΛKTCsasCa

)
(16)

is called matching condition, and the design of the adaptive law assumes the existence of a
constant (possibly unknown) gain matrix KT that must satisfy it. Or, in other words, given a
reference Hurwitz matrix Aref , there exist an ideal KT such that the matching condition must
be satisfied.

The problem is that once the systems parameters A and Λ are unknown, nor the ideal gain
matrix KT and, consequently, neither usas can be computed directly. Instead, the adaptive
control law given by Equation (3) is considered. Then, the augmented dynamics of the real
closed-loop system is given in terms of an adaptive (or estimated) gain matrix K̂T ∈ Rm×psas ,
whose dynamics will be defined later through the inverse Lyapunov analysis:

ẋa = Aaxa −BaΛK̂TCsasCaxa + Brefycmd. (17)

The interest here is to design an adaptive control law such that the augmented system state
xa globally uniformly and asymptotically tracks the state of the reference model xref . It is also
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required that during tracking, all the other signals in the closed-loop remain uniformly bounded.
Thus, for any bounded command ycmd, the control input ûsas must be chosen such that the state
tracking error:

e = xa − xref (18)

globally uniformly and asymptotically tends to zero, i.e.:

lim
t→∞
‖xa(t)− xref (t)‖ = 0. (19)

Subtracting Equation (14) from Equation (17), and using the relation given in Equation (16) it
is possible to compute the closed-loop dynamic of the state tracking error vector:

ẋa − ẋref = Aaxa −BaΛK̂TCsasCaxa + Brefycmd −Arefxref −Brefycmd ⇔
ė =

(
Aref + BaΛKTCsasCa

)
xa −BaΛK̂TCsasCaxa + Brefycmd

−Arefxref −Brefycmd

= Aref (xa − xref ) + BaΛ
(
K− K̂

)T
CsasCaxa

= Arefe + BaΛ∆KTCsasCaxa, (20)

where ∆K = K− K̂ represents the gain estimation error.

A Lyapunov-based approach [9] can now be applied, eventually leading to the design of stable
adaptive laws and a satisfactory closed-loop system tracking performance. The main idea is
choose a Lyapunov function candidate and then select an adaptive law such that the function
time derivative becomes nonpositive, when evaluated along the trajectories of the error dynamic
(Equation (20)). Consider a radially unbounded quadratic Lyapunov function candidate in the
form:

V
(
e,∆K

)
= eTPrefe + trace

(
∆KTΓ−1

x ∆KΛ
)
, (21)

where Γx = ΓTx > 0 is a rate of adaptation and Pref = PT
ref > 0 is the unique symmetric

positive-definite solution of the algebraic Lyapunov equation:

PrefAref + AT
refPref = −Q, (22)

with some Q = QT > 0.The time derivative of V is:

V̇
(
e,∆K

)
= ėTPrefe + eTPref ė +

d

dt

[
trace

(
∆KTΓ−1

x ∆KΛ
)]
. (23)

Now, substituting Equation (20) into Equation (23) we have:

V̇
(
e,∆K

)
=

(
Arefe + BaΛ∆KTCsasCaxa

)T
Prefe

+eTPref

(
Arefe + BaΛ∆KTCsasCaxa

)
− 2trace

(
∆KTΓ−1

x
˙̂KΛ
)

= eTAref
TPrefe +

(
BaΛ∆KTCsasCaxa

)T
Prefe + eTPrefArefe

+eTPref

(
BaΛ∆KTCsasCaxa

)
− 2trace

(
∆KTΓ−1

x
˙̂KΛ
)

= eT
(
Aref

TPref + PrefAref

)
e + 2eTPref

(
BaΛ∆KTCsasCaxa

)
−2trace

(
∆KTΓ−1

x
˙̂KΛ
)
, (24)
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and using Equation (22):

V̇
(
e,∆K

)
= −eTQe + 2eTPref

(
BaΛ∆KTCsasCaxa

)
− 2trace

(
∆KTΓ−1

x
˙̂KΛ
)
. (25)

Via the vector trace indentity aTb = trace
(
baT

)
:

eTPrefBaΛ︸ ︷︷ ︸
aT

∆KTCsasCaxa︸ ︷︷ ︸
b

= trace

(
∆KTCsasCaxa︸ ︷︷ ︸

b

eTPrefBaΛ︸ ︷︷ ︸
aT

)
. (26)

Substituting Equation (26) into Equation (25):

V̇
(
e,∆K

)
= −eTQe + 2trace

(
−∆KTΓ−1

x
˙̂KΛ + ∆KTCsasCaxae

TPrefBaΛ

)
= −eTQe + 2trace

(
∆KT

[
− Γ−1

x
˙̂K + CsasCaxae

TPrefBa

]
Λ

)
. (27)

If the adaptive law is selected as:

˙̂K = ΓxCsasCaxae
TPrefBa

= Γxysase
TPrefBa, (28)

then the time derivative of V in Equation (27) becomes globally negative semidefinite:

V̇
(
e,∆K

)
= −eTQe ≤ 0. (29)

Therefore, the closed-loop error dynamic is uniformly stable. So, the state tracking error e and
parameter estimation error ∆K are uniformly bounded and so is the adaptive gain K̂. Since
ycmd is bounded, and Aref is Hurwitz, then xref and ẋref are bounded (Equation (14)). Once
e and xref are bounded, it is straightforward that xa is uniformly bounded, and consequently
ûsas in Equation (3) as well as y in Equation (13) will also be. This, in turn, ensures that uc

is bounded and so u as well. The latter implies that ẋa is bounded, and thus, ė is bounded.
Furthermore, the second time derivative of V :

V̈ = −2eTQė (30)

is bounded, once e and ė are bounded, and so V̇ is uniformly continuous. Since in addition V
is lower bounded and V̇ ≤ 0, then using Barbalat’s lemma it is possible to demonstrate:

lim
t→∞

V̇ (t) = 0, (31)

which implies:
lim
t→∞

e(t) = 0. (32)

This is the formal proof that the state tracking error tends to the origin globally, uniformly and
asymptotically. As a result, Equation (19) is satisfied and the real plant tracks the reference
model. Table 1 summarizes the MIMO MRAC design equations proposed in this work.
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Augmented open-loop plant ẋa =

[
A 0

−GCtrckC F

]
xa +

[
BΛ
0

]
u +

[
0
G

]
ycmd

Reference model ẋref = Arefxref + Brefycmd

Model matching conditions Aref =
(
Aa −BaΛKTCsasCa

)
State tracking error e = xa − xref

SAS control input ûsas = K̂TCsasCx
Algebraic Lyapunov equation PrefAref + AT

refPref = −Q

MIMO MRAC law ˙̂K = Γxysase
TPrefBa

Table 1: MIMO MRAC design equations

3 NUMERICAL APPLICATION

A case-study considering the flexible aircraft X-HALE will be adressed. Specifically, an adap-
tive SAS will be implemented to deal with the instability which arises applying linear control for
velocity, altitude, sideslip and roll angle tracking, for a wide range of flight speeds, as described
in the section 2.1.

3.1 Model description

The X-HALE is a flexible, high-aspect-ratio, wing-boom-tail type aircraft [1]. It has a 6 m-span
wing, built up with six one-meter-span panels, and a chord of 0.2 m. The two outer panels of
the wing have a dihedral angle of 10 degrees and each one has an aileron. The aircraft has five
equidistant fuselages mounted under the wing to accommodate engines and instrumentation.
It is composed of five horizontal stabilizers. The central one is only used in a flipping mode
to increase the directional stability of the aircraft when in vertical tail configuration [4], thus
reducing the pilot workload while operating the aircraft. The aircraft has an unstable mode1

when the central stabilizer is in the horizontal position. The two outer horizontal stabilizers
(elevons) of each side are used for active control and can be deflected in any possible combina-
tion. All elevons are conected to the wing with booms. The central and two inner booms have
ventral fins for improvement of the lateral-directional stability. Figure 4 shows the aircraft’s
geometry without the ventral fins and the control inputs are indicated with the corresponding
nomenclature.

Figure 4: X-HALE geometry, control surfaces and engines.

1A combination of the Dutch-roll and wing bending modes.
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X-HALE flight dynamics has been modelled according to general body axes formulation by
Guimares Neto et al. [15], applicable to moderately flexible aircraft. Basically, the structural dy-
namics is characterized by a finite-element representation, assuming small elastic deformations
and the incremental unsteady aerodynamics is modeled using the Doublet-Lattice Method [16]
with rational function approoximations [17] and appropriate aerodynamic influence coefficient
corrections to take viscous effects into account.

The model describes the dynamic equations of motion in the inertial reference frame, for all
six degrees of freedom: displacements in the x and y directions, altitude H and roll, pitch and
heading angles (φ, θ and ψ, respectively). Furthermore, the velocity V , the angle of attack α,
the sideslip angle β, as well as the angular rates p, q and r are also described. A particular
feature of the model is the modeling of the structural dynamics using modal amplitudes and
their time-derivatives (η and η̇). Aerodynamic lag states arise due to global (“rigid-body”) and
control surfaces dynamics (λrb) and to the aeroelastic dynamics (λη). The state vector x is:

x =
[
V, α, q, θ, H, x, β, φ, p, r, ψ, y, λTrb84×1

, ηT14×1, η̇
T
14×1, λ

T
η98×1

]T (33)

Seven control sufaces, including four elevons (δro, δri, δli, δlo), one central stabilizer (δc) and two
ailerons (δra, δla), and five engines (τro, τri, τc, τli, τlo) give the control input of the X-HALE,
as seen in Figure 4. The system contain a total of 12 inputs:

u =
[
δla, δlo, δli, δc, δri, δro, δra, τlo, τli, τc, τri, τro

]T (34)

where (•̇) is the time derivative, the subscript l means left side of the aircraft, r right side, o
outer, i inner and c central position. In this application pitch attitude will be controlled by
the inner elevons (δli and δri), operating symmetrically, while roll angle will be controlled by
the outer elevons (δlo and δro), operating antisymmetrically. Yawing motion will be controlled
using differential thrust from the engines. Ailerons will be employed for shape control. Thus,
the input matrix becomes:

Bmix = B
(

:, [(3 + 5) (15 + 16 + 17 + 18 + 19) (15 + 16− 18− 19) (2− 6) 1 7]
)

(35)

where Bmix ∈ R222×6 and the input vector is assumed to be:

u =
[
δe, Π, δr, δa, δla, δra

]T (36)

where Π is a factor that expresses the relation between the total thrust of the aircraft and the
trimmed one.

The 116 outputs comprises measurements such as displacements and attitude, linear and angular
velocities, load factors, at different points of wings, stabilizers and pods. In addition, it is also
possible to recover structural displacements and twists.

3.2 Baseline controller

The first step in the adaptive controller design is to determine a baseline linear controller which
will be used in the reference model. This controller dictates the desirable closed-loop time-
response characteristics. Assuming the architecture presented in Fig. 2, setting Λ = Im in
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Equation (5) and assuming that A is known, the ideal SAS gain matrix KT of the inner-loop
has been calculated minimizing the linear quadratic cost index:

J =
1

2

∫ ∞
0

(
yT
sasQblysas + uT

sasRblusas

)
dt (37)

where Qbl and Rbl are symmetric and positive definite weighting matrices. The outputs for the
SAS (ysas) are θ, q, used as feedback signals to the elevator δe; φ, p, r, used as feedback signals
to the outer elevons mixed in the lateral control command δa; and the structural displacements
measured at the wing tips (Tz), fed back to left and right ailerons, δla and δra. The choice of the
cost index given in the Equation (37) ensures optimal regulation of the output ysas around its
trimmed condition with minimal control effort usas.

For the outer loop, a controller was developed for velocity, altitude, sideslip and roll angle
tracking. The outer loop controller has the structure presented in the Equation (7-8). The
optimal design of matrices F, G, H and J was achieved by structured H∞ synthesis using the
systune MATLAB tool. The detailed development of this baseline controller is presented by
Gonzales et. al [13, 18].

3.3 Simulation results

With the appropriated choice of the reference model, the next step is to design the MRAC
system in order to recover the desired closed-loop performance, without any information about
the parametric uncertainties. The design focus was on reducing undesired transient oscillations
while providing adequate tracking response. After several iterations, the design parameters
selected were:

Q =


1e−2I9 ∗ ∗ ∗ ∗
∗ 1e−5I84 ∗ ∗ ∗
∗ ∗ 1e−2I28 ∗ ∗
∗ ∗ ∗ 1e−5I98 ∗
∗ ∗ ∗ ∗ 1e−2I8

 ; Γx = Ipsas (38)

where IN corresponds to the N -by-N identity matrix and ∗ are the appropriate zero matrices.
In the Q matrix, the first row weights the rigid body states, while the second one weights the
rigid body aerodynamic lag states, the third weights the elastic states, the fourth the elastic
aerodynamic lag states and the fifth row weights the compesator states. It is worth mentioning
that the variables x, y and ψ were ignored in the design, since there is no dependency of the
other states on these three variables. Now, the adaptive law described in Tab. 1 is able to be
implemented and simulated.

The performance of the proposed control scheme has been evaluated considering a simulation
of an accelerated, coordinated turn manoeuvre, with smooth increment of 4 m/s in the final
flight speed and 20 degrees for the bank angle. Altitude increment and sideslip angle were
hold constant and equal to zero. Figures 5 to 9 present the time responses of the closed-loop
nonlinear simulations. In the figures, the results corresponding to the application of linear
control (considering the plant at 14 m/s) are also displayed for the matter of comparison, and
are called “non-adaptive”. The results assigned by “reference” correspond to the closed-loop
linear model used as the reference model in the adaptive law.

Clearly the MRAC system is able to recover the closed-loop dynamics of the reference model.
According to the Fig. 5, the commanded velocity is reached with an overshoot less than 1% and
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null steady-state error. A similar result is observed for the bank angle tracking. On the other
hand, the altitude presents small oscillations around the trim point and a steady-state error of
0.02% relative to the commanded altitude, and 0.05% relative to the reference model altitude.
The first one is a direct result of no zero poles in the plant, i.e. no pure integrator. The latter
probably occurs because of a slight difference between the DC gains presented by the real plant
and the reference model, since the reference model was obtained for a lower velocity. Finally,
the sideslip angle presents a variation of 2.5 degrees in relation to the commanded one and a
very small steady state-error of 0.07 degree.
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Figure 5: Closed-loop system tracking performance.

Roll rate response is shown in the left plot on Fig. 6. One can clearly see that after about 40s, an
instability shows up in the response considering linear control (non-adaptive). In the right plot
on the same figure, vertical displacements of left and right wings can be seen, and the same in-
stability can be observed with non-adaptive control. The corresponding root-loci for increasing
velocity can be seen in Fig. 7, where a pole corresponding to one of the aircraft elastic modes
crosses the imaginary axis and gets unstable at 18 m/s. The corresponding modal shape, a third
torsional mode, is shown on the same figure. Still in Fig. 6, the adaptive control law was able
to avoid the referred instability, as the responses of roll rate p and wing tips displacements Tz
attested. Additionally, for the adaptive case, the wing tip displacements stabilize in a condi-
tion where the deformations are larger, i.e. the wing bending increased. This is expected since
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with the increase in velocity, and the resulting load factor of the turning maneuver, the aircraft
stabilizes in a higher loading condition.
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Figure 7: Root-loci of the closed-loop system considering linear (non-adaptive) control for increasing velocity.

Looking now to the control signals (Fig. 8), it is observed that all of them are feasible, that
is, they operate with magnitudes smaller than the limits stipulated (±25 degrees for the control
surfaces and a thrust factor between 0 and 6), and the rate limits are not violated. To track the
commanded velocity holding the trimmed altitude, all the engines accelerate in the first few
seconds. The increase in velocity results in increased lift and, in turn, the aircraft tends to raise
up its altitude. To compensate this effect, the inner elevons are deflected positively to regulate
again the altitude of the aircraft to 700 m.

In the bank angle tracking, command reversal can be observed. It occurs due to the fact that
the elevons are located at the ends of the booms, and their deflection cause a pitching moment
that, as a result of the wing flexibility, changes the local angle of attack, leading to the opposite
rolling behavior. Command reversal also has a direct effect on the ailerons used for shape
control. The increase in the local angle of attack of the left half-wing generates a bending
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Figure 8: Input control signals.

moment at the wing root that deforms the left half-wing upwards, and the opposite occurs with
the right half-wing. As a consequence, the left aileron deflects upwards (negative deflection) to
control the shape, and similarly, the right aileron deflects downwards (positive deflection).

Finally, Fig. 9 presents the temporal evolution of the adaptive gains. The label K̂(i, :) in
each plot means that the corresponding figure contains all gains of the i-th row of the adaptive
gain matrix K̂T. In the legend, K̂(i, j) means that the corresponding line represents the time
evolution of the adaptive gain located in the i-th row and j-th column. The gains were initialized
in the simulation with their respective nominal values. It can be seen that gains with initial
values different from zero varied very little in relation to their nominal value. On the other
hand, some of the gains initialized to zero presented a more significant variation. The online
adaptation of the gains ensures that the real closed-loop system behaves with desired stability
and performance characteristics.
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Figure 9: Evolution of adaptive gains.
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4 CONCLUSION

In this work the design of a dynamic gain scheduling making use of an adaptive control law was
addressed and applied to the trajectory control of a very flexible aircraft. It has been shown that
for a classical tracking problem in which an aircraft is subject to large variations relative to the
trimmed condition, linear control failed to hold stability. To overcome this problem, an online
estimation of SAS gains was proposed. This estimation is done through an adaptive control law
designed based on the dynamic behavior of a reference model.

An application for X-HALE aircraft has been implemented for the tracking of velocity, altitude,
sideslip and roll angle. The nonlinear simulation results showed instabilities for large variations
of commanded velocity when linear control was applied. On the other side, the proposed adap-
tive law was able to hold stability while ensuring the desired performance, without demanding
excessive control effort.

A limitation of the control law proposed here is the assumption that all states of the system
are measurable. In a future work, an alternative to deal with this problem will be addressed.
Dicretization of the proposed adaptive controller will also be investigated for implementation
on the real aircraft.
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