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Abstract: A fast direct method was developed to compute flutter points and the sensitivities
of these critical speeds to a wide range of aerodynamic and structural parameters. The method
computes flutter sensitivities in an adjoint-based fashion to increase efficiency, and accounts
for the dependence of flutter speed on the nonlinear relationship between static aeroelastic de-
formation and parameters of interest. This method is formulated as part of a general analysis
framework, which is well-suited for prediction of Hopf bifurcation phenomena in a variety of
nonlinear physical systems. The numerical properties of the scheme are studied using the prob-
lems of bifurcation of a tubular reactor and flutter of a very flexible, cantilevered wing. For
the latter case, the wing is modeled structurally as a beam and discretized with finite elements;
the aerodynamic loads are modeled with the ONERA stall model. Sensitivities of wing flutter
speed with respect to a large number of aerodynamic and structural parameters are computed.

1 INTRODUCTION

A need exists to capture flutter constraints in design for aeroelastic and aerothermoelastic sys-
tems governed by physics requiring resolution with computational fluid dynamics (CFD) and
potentially nonlinear structural analysis. Physical examples motivating this need include high-
performance aircraft with shock-driven aeroelastic responses in the transonic regime, dynamic
stability of highly flexible aircraft, and thermally and aerodynamically loaded, built-up struc-
tures.

The barriers to incorporating physics-based flutter constraints in design are primarily computa-
tional efficiency and accuracy. CFD analysis of dynamical behaviors in three space dimensions
will be computationally burdensome. Assuming the optimization procedure is gradient based,
the effort of computing a modest number of flutter points using CFD may be tolerable (in con-
trast, non-gradient-based optimization methods generally require too many function evaluations
in design spaces of practical size to be relevant).
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However, the numerical ability to compute sensitivities (or derivatives) of flutter constraints
with respect to design variables, quantities needed for constrained optimization, is almost never
available or practical using CFD. Such an ability can be approximated through finite differences,
but this approach becomes prohibitively costly as the number of design variables increases and
can have an accuracy, tied to finite-difference step size, which can be uncertain and problem
dependent. This paper demonstrates a new approach that simultaneously increases the efficiency
of the flutter analysis procedure and analytically computes precise flutter sensitivities through
the adjoint approach at a cost roughly independent of the number of design variables.

Cardani and Mantegazza [1] of Politecnico di Milano developed a direct method based on Hopf
bifurcation theory for computing airfoil flutter points [1] and demonstrated the methodology
on a linear aeroelastic model representative of wing-body system compactly expressed with
8 modes. They extended this procedure to the computation of derivatives of flutter-specific
quantities [2]. Later, in recognition of the many parameters impacting flutter, Bindolino and
Mantegazza [3] reformulated the derivative calculation using adjoints.

Morton and Beran [4] applied a similar direct procedure to the computation of airfoil flutter
points of the Euler equations. They demonstrated that the general Cardani and Mantegazza
framework permits flutter points to be precisely computed at a cost on the order of a steady-
state solution by reducing the dynamical analysis to a harmonic problem solved in steady-state
fashion with the additional unknowns of flutter frequency and point of onset. By avoiding
costly time-accurate analysis and bracketing, direct analysis can more efficiently and precisely
compute flutter points. The Euler-based aerodynamic approach of [4] enabled shocks in the
transonic regime to be captured as well as a nonlinear dependence of the equilibrium solution
on parameters (e.g., angle of attack). The direct procedure was also extended to flutter boundary
computation for the Euler equations via continuation and forward analytical sensitivities [5].

Direct computation of flutter points for the Euler equations was extended to 3D problems by
Badcock et al., beginning with a symmetric wing [6] and followed by more complex configura-
tions [7]. Timme et al. explored a more adaptable form of the direct approach, which employed
a Schur complement and a kriging surrogate model of the interaction terms coupling fluid with
structure [8]. This enabled rapid propagation of structural uncertainties [9] and accelerated
flutter analysis through construction of a multi-fidelity kriging model [10].

A software library supporting the computation and tracking of Hopf bifurcations for large-
scale, discrete systems arising from the numerical analysis of general physical problems was
developed in the Sandia LOCA project [11]. LOCA methodologies, which also address folds
and other types of bifurcation, are described in [12] and support the strategy of separating the
general bifurcation analysis from user-supplied discretizations. LOCA analysis is based on
Newton’s method and can leverage other Sandia solvers, such as Aztec and Trilinos.

In this paper, the direct analysis of flutter points is revisited to explore the adjoint computa-
tion of sensitivities of Hopf point location with respect to physical and numerical parameters,
a capability not known to exist in LOCA, and to explicitly account for coupled nonlinear equi-
librium behavior, a capability not explored in [3]. The sensitivity analysis procedure is based
on an adjoint-variable formulation of the Hopf equations to promote slow growth of analysis
cost as the number of parameters grows. Spatial convergence of the scheme is established for
computation of the Hopf point and sensitivities of Hopf point location. Hopf bifurcations of
two different physical systems are computed: first, a non-adiabatic tubular reactor with axial
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mixing [13], and second, a high-aspect-ratio wing [14] modeled aerodynamically with the ON-
ERA stall model. Each physical problem involves a static nonlinear dependence of response on
parameters. The adjoint-variable formulation of the Hopf equations is also the foundation for
a paper elsewhere in this IFASD conference, which exploits adjoints to enable mesh adaptivity
driven by the goal of accurate flutter calculation [15]. This capability is demonstrated for the
aeroelastic problem of supersonic flow over a flat panel.

2 METHODOLOGY

The general methodology for fast computation of flutter points and their sensitivities to design
parameters is based on a casting of the governing equations in a general, first-order form:

dx

dt
= f(x; z, µ), (1)

where x is an Ne-dimensional array of real states
(
x ∈ RNe

)
, z is an Np-dimensional array of

real parameters
(
z ∈ RNp

)
generally considered to be fixed, µ is a real parameter generally con-

sidered to be free, t is the time variable, and f is a nonlinear mapping
(
f : RNe × RNp+1 → RNe

)
.

The Jacobian of the equations is J(x; z, µ) ≡ df
dx

=
[
∂fi
∂xj

]
. This paper is focused on the com-

putation of simple Hopf bifurcation points: equilibrium solutions of (1) occurring at parameter
values µ = µ∗ for which J has a conjugate pair of imaginary eigenvalues, β = ±iω, where
i ≡
√
−1 and ω is the (positive) real frequency of the bifurcating mode. Herein, (·)∗ denotes a

quantity at flutter.

The dynamical Hopf condition is stated as Jp = iωp, which comes from the eigen-problem
Jp = βp, obtained by linearization of (1), assuming perturbations of the form εpeβt (ε → 0;
p ∈ CNe). The complex eigenvector p is normalized by an arbitrary, constant vector: qTp−1 =
0 (q ∈ RNe). Following [16], the bifurcation equations are combined to form an expanded
system of equations governing the location of Hopf points in µ, holding z fixed:

fexp(xexp) = 0, fexp ≡

 f
Jp− iωp
qTp− 1

 , (2)

where xexp ∈ RNe+2×CNe , and at the Hopf point, xexp = x∗exp ≡ [x∗,p∗, µ∗, ω∗]T . This inverse
problem for µ∗ was solved in real form in [16] and in complex form in [17].

2.1 The LOCA Hopf Bifurcation Method

Salinger et al. [12] describe a method for solving (2) that has been implemented in a software
library suitable for large, engineering problems [11]. Assuming that the equations of motion
can be strictly represented by (1) (i.e., the coefficient matrix to the unsteady term is the identity
matrix), then Newton iterates of (2) take the form

J 0 0 ∂f
∂µ

0
∂J
∂x
pr J ωI ∂J

∂µ
pr pi

∂J
∂x
pi −ωI J ∂J

∂µ
pi −pr

0 qT 0 0 0
0 0 qT 0 0


n 

∆nx
∆npr
∆npi
∆nµ
∆nω

 = −fnexp, (3)
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where p = pr + ipi and the dynamical and complex Hopf condition, (J − iωI)p = 0, is
expressed as two real equations. Salinger et al. [12] provide the solution for the correction
to xexp using block matrix manipulations. The computational cost of these manipulations is
dominated by the cost of computing two solutions of Jy = b, where b is an arbitrary, real
source term, and three solutions of Ay ≡ (J − iωI)y = b, where b is an arbitrary, complex
source term. The latter equation is solved iteratively in real form using the Aztec library [11,12]
by decomposing y and b into real and imaginary parts:[

J ωI
−ωI J

] [
yr
yi

]
=

[
br
bi

]
. (4)

2.2 The Equilibrated Complex Bifurcation (ECB) Method

A different approach to solving (2) removes the state variables x from the expanded system
by solving f(x; z, µ) = 0 at each iteration. The equilibrium states then become co-dependent
variables, such that xn = x(µn). Newton iterates now take the form

f(xn; z, µn) = 0→ xn, (5)[
J− iωI dJ

dµ
p −ip

qT 0 0

]n  ∆np
∆nµ
∆nω

 = −
[
Jp− iωp
qTp− 1

]n
≡ −rn = −

[
r1

r2

]n
, (6)

 pn+1

µn+1

ωn+1

 =

 pn

µn

ωn

+

 ∆np
∆nµ
∆nω

 , (7)

where Jn = J(x(µn); z, µn), and r are referred to as the “dynamic” residuals (in contrast with
the equilibrium residuals, f ). This form was developed by the authors to simplify the block
matrix manipulations used in the solution of (2) and in the solution of the adjoint variables
(described in Section 2.3).

Like the LOCA method, work during iterates of this Equilibrated Complex Bifurcation (ECB)
method is largely divided into two pieces. Again, three systems of the form Ay = b are solved,
where A ≡ J− iωI is referred to as the dynamic Jacobian. Also, each iterate requires a steady
solution of (5) to be computed. Generally, as the ECB scheme converges, the cost of computing
these steady solutions decreases, since xn−1 is used as an initial guess for xn. However, this
cost is generally higher than that of the LOCA method, which only requires solutions of two
linear systems described by J. (The authors note that the LOCA method was re-implemented
in the current computational framework and found to provide Hopf solutions identical to that
obtained with the ECB method.)

In (6), the quantity dJ
dµ
p can be estimated with finite differences,(

dJ

dµ
p

)n
= lim

ε→0

1

ε
(J (x(µn + ε); z, µn + ε)pn − J (x(µn); z, µn)pn) , (8)

but this approximation is costly (requiring two equilibrium solutions of f = 0 per Newton
iterate) and introduces numerical errors that negatively impact the precision of the subsequent
sensitivity analysis. Instead, the chain rule is used

dJ

dµ
= Jx

dx

dµ
+
∂J

∂µ
, (9)

4



IFASD-2017-16

where the latter linearization is evaluated by the same software module that evaluates f . For
variations on a branch of equilibrium solutions, Jdx

dµ
= − ∂f

∂µ
, which requires one linear solve on

the full system to determine dx
dµ

(minimizing cost by recycling the LU -decomposition of J). The
product Jx

dx
dµ

is evaluated to near machine precision with complex-step directional derivatives
to avoid explicitly computing and storing Jx.

Three tolerances are specified to control the iterative procedure: δe, δd, and δf . The tolerance δe
is used to terminate the analysis of the equilibrium solution x when ||f ||∞ < δe. The tolerance
δd is used to terminate the analysis of the bifurcation solution when ||r||∞ < δd. Lastly, the
tolerance δf is used to freeze the dynamical linearization when the dynamic residuals become
sufficiently small, i.e., An = Â ≡ Anf , where nf is the first iterate such that ||f ||∞ < δf and
nf < n (freezing A prevents this matrix from becoming singular as [p, µ, ω] gets very close to
[p∗, µ∗, ω∗]).

2.3 The ECB Method with Sensitivities

The sensitivities of flutter speed, µ∗ = µ∗(z), with respect to parameters [zi], are
[
∂µ∗

∂zi

]
(i =

1, ..., Np), and are computed in an adjoint-based manner in anticipation of numerous parameters
(Np � 1). For the original bifurcation equations in complex form, (2), the sensitivities are
evaluated with

∂µ∗

∂zi
= −cT ∂fexp

∂zi
,

(
∂fexp

∂xexp

)T
c =

(
∂µ∗

∂xexp

)T
= [0,0, 1, 0]T , (10)

where c are the complex adjoint variables. The authors are not aware of an adjoint formulation
of the LOCA method, and are in the process of developing one. With the ECB method proposed
herein, a compact linear system governing a reduced set of adjoint variables was found: (J− iωI)T q

dJ
dµ
p 0

−ipT 0

 c =

 AT q
dJ
dµ
p 0

−ipT 0

 c =

 0
1
0

 , (11)

where c = [c1, c2]T ∈ CN+1. Equation (11) is solved for c using a block matrix formulation.
The linear system is solved iteratively, since the dynamic Jacobian A is represented imperfectly
by Â, and the LU -decomposition of Â is recycled from the bifurcation point analysis.

For the ECB method, the sensitivity equation is impacted by the manner in which an equilibrated
solution is maintained during analysis: i.e., x = xeq(µ, z), where xeq is the equilibrium solution
at (µ, z). The sensitivity equation (10) is now re-expressed as

∂µ∗

∂zi
= −cT ∂r

∂zi

∣∣∣∣
x=xeq

, (12)

where it is understood in the evaluation of the right-hand side of (12) that x is varying with zi
through x = xeq(µ∗, z). Equation (12) simplifies to:

∂µ∗

∂zi
= −cT ∂

∂zi

∣∣∣∣
x=xeq

[
Jp− iωp
qTp− 1

]
= −cT

[
∂J
∂zi

∣∣∣
x=xeq

p

0

]
, (13)
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where the chain rule can be used to expand the top row of (13) with µ = µ∗:

∂J

∂zi

∣∣∣∣
x=xeq

p =

(
Jx
∂x

∂zi
+
∂J

∂zi

)
p. (14)

Following the approach taken to analyze bifurcation points, the linearization ∂J
∂zi

is evaluated
by the same software module that evaluates f . Similarly, on a branch of equilibrium solutions
f(x;µ∗, z) = 0,

J
∂x

∂zi
= − ∂f

∂zi
. (15)

For each parameter zi (i = 1, ..., Np), (15) is solved (multiple right-hand sides of a linear
system). The computed values ∂x

∂zi
are used in complex directional derivative estimates of Jx

∂x
∂zi

.

3 TEST PROBLEMS

Hopf points and their sensitivities to parameters are computed for two different models: a tubu-
lar reactor [13] and a high-aspect-ratio wing [18]. The former study establishes the method-
ology for a compact, nonlinear problem that has been previously examined using bifurcation
techniques and whose equilibrium response varies in a nonlinear fashion with physical param-
eters. The latter study demonstrates the applicability of the methodology to a practical flutter
problem for which the equilibrium response also varies in a nonlinear fashion with physical
parameters. While the aerodynamics are not modeled with CFD, the wing model is reasonably
representative of the complexity to be encountered with CFD-based aeroelastic analyses.

3.1 Tubular Reactor

The tubular reactor in one-space-dimension has served as a model of Hopf bifurcation in non-
linear dynamical systems for various activities in method development, including bifurcation
solvers, model reduction, and multi-fidelity analysis [19–22]. The model has the virtues of non-
linearity and rich physical behavior including hysteresis, limit-cycles, and bifurcations of limit
cycles, while enabling very fast analysis owing to the low dimensionality of the discrete repre-
sentation. The unsteady behavior of the non-adiabatic reactor is modeled over the unit domain
(0 < x < 1) as described in [13]:

∂y

∂t
=

1

Pem

∂2y

∂x2
− ∂y

∂x
− µy exp

(
Γ− Γ

Θ

)
, (16)

∂Θ

∂t
=

1

Peh

∂2Θ

∂x2
− ∂Θ

∂x
− β

(
Θ− Θ̄

)
+ µαy exp

(
Γ− Γ

Θ

)
, (17)

where y and Θ are the dependent variables over a unit domain with y(x, 0) = 0 and Θ(x, 0) = 1.
The variables Pem, Peh, β, α, Γ, and Θ̄, and µ are physical parameters, and the Dahmkohler
number µ is treated as the bifurcation parameter, whose value at Hopf points will be computed
as a function of the other parameters. The boundary conditions are ∂y

∂x
= Pem (y − 1) and

∂Θ
∂x

= Peh (Θ− 1) at x = 0, and ∂y
∂x

= ∂Θ
∂x

= 0 at x = 1.

Equations (16) and (17) are discretized on a uniform grid of N points using second-order-
accurate central differences, and the boundary conditions are discretized on the same grid using
second-order-accurate one-sided differences. The latter equation set is analytically removed
from the discrete system, yielding a dynamical system of the canonical form introduced above,
dx
dt

= f(x; z, µ), where x collocates the discrete states and z ≡
[
Pem, P eh, β, α,Γ, Θ̄

]T .
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Figure 1: High-aspect-ratio wing: (left) physical model in wind tunnel (From “Experimental and Theoretical Study
on Aeroelastic Response of High-Aspect-Ratio Wings,” by Tang and Dowell [14] reprinted by permission
of the American Institute of Aeronautics and Astronautics, Inc.); (right) schematic of model showing
showing reference frame [23] (reproduced as a work of the U.S. Government in the public domain).

3.2 High-Aspect-Ratio Wing

The flutter of a highly flexible, high-aspect-ratio wing, experimentally and theoretically inves-
tigated by Tang and Dowell [14], serves as a second test problem for the ECB method. The first
two authors analyzed the aeroelastic responses of this wing as a testbed for structural design
optimization methods to passively mitigate flutter speed and limit cycle amplitude [23]. This
model was selected for study herein owing to the nonlinear dependence of wing equilibrium
response on various parameters and the impact of this dependence on flutter speed.

The wing test article and test environment are described in [14,23] and briefly summarized here.
Geometrically, the wing was nearly half a meter in length, rectangular in planform shape, and
sectionally defined by a NACA 0012 airfoil. A slender body of revolution was attached to the
wing tip. Structurally, the wing was a thin, flat steel spar with thin flanges distributed along its
length, and was cantilever mounted within the Duke University low-speed wind tunnel. Rigid
airfoil sections were affixed to the spar and separated by wood pads, placing the elastic axis at
the half-chord. The weakening of the spar and inertial presence of the store served to reduce
flutter speed to within wind tunnel speeds. Root angle of attack was varied. A picture of the
wing in the test facility is shown in Figure 1 (left), where wing deformation under gravity loads
is evident. Accompanying this picture is a wing schematic relevant to the analysis methodology.
Values of physical and numerical parameters are tabulated in Table 1.

The elastic behavior of the wing is modeled by the Hodges-Dowell equations [23, 24]:

mv̈ + EI2
∂4v

∂x4
+ (EI2 − EI1)

∂2

∂x2

(
φ
∂2w

∂x2

)
= Rv, (18)

mẅ + EI1
∂4w

∂x4
+ (EI2 − EI1)

∂2

∂x2

(
φ
∂2v

∂x2

)
= Rw, (19)

Ioφ̈−GJ
∂2φ

∂x2
+ (EI2 − EI1)

∂2w

∂x2

∂2v

∂x2
= Rφ, (20)

for in-plane (v), out-of-plane (w), and torsional (φ) displacements. The equations are suitable
for modeling weakly nonlinear responses; third-order and higher nonlinearities are neglected.
Chordwise bending and lengthwise (x-coordinate direction) deformations of the wing are also
assumed to vanish. For brevity, the quantities Rv, Rw, Rφ aggregate forces and moments other
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than those due to inertial and elastic behavior of the wing, such as the influences of gravity and
the tip store. The nonlinear terms in (18)-(20) vanish when EI2 = EI1, such as when the beam
has a square section and is isotropic.

Parameter Symbol Value
Gravitational acceleration g 9.8 m/s2

Air density ρ 1.225 kg/m3

Air speed U case dependent
Root angle of attack α0 2◦

Wing length - 0.4508 m
Wing chord c 0.0508 m

Wing thickness t 0.01 m
Tip body length - 0.1016 m

Tip body diameter - 0.0095 m
Spar width - 0.0127 m
Spar height - 0.00127 m

Spar mass per unit length m 0.235 kg/m
Distance from elastic axis to center of gravity ycg -5.08×10−4 m

Distance from elastic axis to aerodynamic center yac -0.0127 m
Rotational inertia per unit length Io 2.05×10−5 kg·m
Bending (“flapwise”) stiffness EI1 0.42 N·m2

In-plane (“edgewise”) stiffness EI2 18.44 N·m2

Torsional rigidity GJ 0.95 N·m2

Tip mass M 0.0417 kg
Tip inertia Iv 0.002 kg·m2

Tip inertia Iw 0.0 kg·m2

Tip inertia Iθ 8.25×10−5 kg·m2

Damping, mass coefficient ζM 0.2
Damping, stiffness coefficient ζK 1.0×10−5

Table 1: Physical, wing, and model parameters and their baseline values (parameters not assigned a symbol are
unreferenced below).

The structural equations are discretized as in [23] usingN finite elements, distributed uniformly
from wing root to tip. Each node has five degrees of freedom: [v, w, φ, ∂v/∂x, ∂w/∂x]. The
spatially discrete equations in the collocated structural unknowns u take the second-order form

Mü + Cu̇ + Fint(u) = Fext, (21)

where M is the mass matrix, C is the structural damping matrix, Fint(u) is a nonlinear function
of u describing internal elastic forces, whose linearization is the tangent stiffness matrix, and
Fext is the external force vector of gravitational and aerodynamic loads. Equation (21) is re-cast
in state-space form, and coupled with the aerodynamic equations. The authors note that unlike
[23], which projects the finite-element discretization (and associated quantities entering through
the aerodynamics) onto a truncated set of structural modes, all the degrees of freedom of the
finite-element discretization are employed in this study. This step was taken to remove potential
complications arising from propagating sensitivity information through a modal formulation.

The aerodynamic model is the ONERA stall model of Tran and Petot [25], summarized in detail
by [23] and the references therein. The model is two-dimensional with two first-order equations
describing the evolution of lift and moment via a state-space representation of Theodorsen’s
function, and two second-order equations describing stall terms (which are not activated in this
work) through a smooth cubic representation of lift and moment coefficient between an angle of
attack, α, between 0◦ and 20◦ (vanishing thereafter). Aerodynamic coefficients are computed
at each structural node based on the local angle of attack and then varied linearly over each
element to provide work-consistent nodal loads. The resulting aerodynamic model is composed
of 6(N+1) degrees of freedom, which when coupled with the structural equations in first-order
form yields a discrete aeroelastic system containing Ne = 10N + 6(N + 1) equations.
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Figure 2: Stability of equilibrium-solution branches and peak limit-cycle behavior [5]. Hopf points denoted by •;
simple LCO peak values denoted by ◦; complex, unsteady peak values denoted by 4 (reproduced as a
work of the U.S. Government in the public domain).

4 RESULTS

Results are now presented for the tubular reactor and high-aspect-ratio wing problems, including
the cataloguing of Hopf points and their sensitivities. Grid convergence studies are carried out
for both problems, and discretization errors are estimated for the tubular reactor problem.

Computations are performed with a common software framework written in the Python 2.7
language. Modules for each problem, so-called physics units, provided evaluations of f along
with linearizations with respect to states and parameters. The Hopf point and sensitivity analysis
procedures were expressed in a separate, generic module. In this way, formulation and coding
errors were diagnosed with the reactor problem before moving on to the more complex wing
problem. (In future framework versions, physics units will be expressed in compilable code and
supply needed data using using a language-independent approach based on remote-procedure
calls [26].) It is also noted that, for convenience, solutions were computed using dense matrix
routines in Scipy. Analysis of larger problems will require more specialized linear solvers.

4.1 Tubular Reactor

Results for the tubular reactor problem are now presented with focus on establishing the nu-
merical accuracy of the ECB procedure. Previously computed Hopf solutions, µ∗ and time-
dependent, limit-cycle solutions [19], are reproduced in Figure 2. This study [19] quantified
the two known Hopf points, each in a separate reactor regime, using a fine mesh (N = 129):
µ∗ = 0.16504 (kinetic regime) and µ∗ = 0.18132 (ignited regime). Hopf points and sensitivi-
ties computed using the ECB procedure with a much finer mesh (N = 1281) are tabulated in
Table 2. Owing to the structure of the solution, the computation of the Hopf bifurcation in the
ignited regime is less precise than that of the kinetic regime.

The predictions of µ∗ and ∂µ∗/∂Γ appear second-order accurate, consistent with the manner in
which the tubular reactor equations were discretized. This is documented for the Hopf point
in the kinetic regime. The parameter Γ was selected, since it appears in the exponent of the
nonlinear reaction term and was judged to be of interest, although the sensitivity is relatively
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Regime µ∗ ∂µ∗

∂Γ
∂µ∗

∂α
∂µ∗

∂Θ̄
∂µ∗

∂β
∂µ∗

∂Pem

∂µ∗

∂Peh
Θmax

Kinetic 0.165039 -0.0144734 -0.653577 -2.53739 0.0750083 -0.00500602 0.00222797 1.139045
Ignited 0.18142 -0.028090 -1.1880 -1.2569 0.10174 -0.014756 0.00041357 1.2435

Table 2: Bifurcation points and their sensitivities for the tubular reactor problem (N = 1281).
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Figure 3: Convergence of ECB method with respect to node spacing for tubular reactor: (left) µ∗ (kinetic regime);
(right) ∂µ∗/∂Γ, including comparison to finite-difference estimates.

weak. Results are provided in Figure 3 for meshes of 17 to 1281 nodes, where an “exact” solu-
tion is inferred from the solutions on the finest two meshes assuming a quadratic convergence.
In Figure 3 (left), the error in µ∗ approaches an asymptotic descent rate of 2 for grids with
about 161 nodes or more. The variation of error in ∂µ∗/∂Γ with respect to node spacing is also
observed to be second order, with improvement in accuracy obtained with the ECB method on
finer meshes in comparison to estimates obtained with finite differences.

The iterative convergence of the ECB scheme is now evaluated for the Hopf point in the ki-
netic regime. The convergence is shown in Figure 4, which tracks the maximum norm of the
dynamic residuals, ||r||∞, and deviations of µ and ω from their converged values. As expected
with Newton’s method, the residuals converge quadratically, verifying the consistency of the
software implementation and demonstrating the algorithmic effectiveness.

Initialization strongly influences iterative convergence, and poor initializations can cause the
procedure to diverge. An initial estimate of µ∗ for each case is computed in a brute-force man-
ner using the method of bi-section applied to the equation g(µ) = 0, where g =

max

i Re(βi),
where [βi] are the eigenvalues of J. The critical mode p is initialized by the eigenvector corre-
sponding to this eigenvalue, and ω by the imaginary part of the eigenvalue. While the bi-section
method provides the answer sought by the ECB scheme, a perturbation is applied to the initial-
ization to force non-trivial iteration of the ECB method. (For larger problems, the bi-section
method is not practical, and other methods should be explored for initialization, including recy-
cling of previous bifurcation points (continuation), projection of transient solutions, and model
reduction. Such methods are not explored in this paper, but will be the subject of future work.)

4.2 High-Aspect-Ratio Wing

The problem of the highly flexible, cantilevered wing is now considered. Several results are
shown to demonstrate the efficacy of the bifurcation method for a problem more complex than
the tubular reactor and relevant to aeroelasticity. The algorithmic behavior of the ECB scheme
is found to be the same as the preceding study; no special adjustments to the algorithm were
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Figure 4: Convergence of ECB method by iteration to Hopf solution at µ∗ = 0.165039 with ω∗ = 0.364121
(N = 161).

Figure 5: Free vibration modes of wing structure, including store mass and excluding effects of gravitation and
damping (modes are normalized by different scales to provide a consistent view; deformation of wing
spar structure notionally extended to leading and trailing edges for visualization purposes).

made to accommodate the new physics of this aeroelastic problem. Unless note is made, the
calculations employed N = 10 finite elements and Ne = 166 states.

The first four free-vibration modes of the wing are shown in Figure 5 and are essentially identi-
cal to those used in [23]. Natural frequencies are included. In order of frequency, these are: first
bending (Mode 1), first in-plane (Mode 2), second bending (Mode 3), and first torsion (Mode
4). As noted in [14, 23], flutter response primarily receives contributions from Mode 3 and
4, and occurs at a frequency between these two modes. Spatial convergence of the vibration
modes in N is verified, as evident in Figure 6 for Mode 3. Similarly, the static aeroelastic wing
shape is seen to converge with increased N , as shown in Figure 7 for an airspeed of 32 m/s,
which is close to the flutter speed observed at the baseline value of α0. Lastly, the flutter mode
computed with the ECB method converges with increased N , as shown in Figure 8 using the
imaginary component of p. In this figure, it is evident that flutter frequency and speed converge
strongly, with somewhat delayed convergence in the mode shape. Taking these results together,
the selection of N = 10 elements is seen by the authors to be sufficient for a baseline analysis.

The iterative convergence properties of the ECB method to wing flutter solutions are generally
excellent. For the baseline configuration, only a few iterations are required to obtain the flutter
point at U∗ = 30.952 m/s (ω∗ = 145.73 rad/s) to high precision. The convergence rate is
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Figure 6: Convergence of free vibration Mode 3 with increased N .

Figure 7: Convergence of static aeroelastic deformation with increased N (U = 32 m/s; α0 = 2◦).

Figure 8: Convergence of flutter mode (real part of p) with increased N (α0 = 2◦).
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Figure 9: Convergence of ECB by iteration to flutter solution at U∗ = 30.952 m/s with ω∗ = 145.73 rad/s: (left)
restart near bifurcation conditions; (right) restart from flutter solution at α0 = 0.

superior to that of the tubular reactor for a similar kind of initialization, suggesting that the
nonlinearities are stronger for the reactor. Two initialization cases are examined for α0 = 2◦:
the first restarts the bifurcation analysis at the flutter solution but with large initial errors in
frequency and flutter speed Figure 9 (left), the second restarts the bifurcation analysis from a
flutter solution at α0 = 0, whose equilibrium aeroelastic shape is significantly different than the
baseline case, with moderate errors in frequency and speed Figure 9 (right). Restarting from
a flutter solution at α0 = 0 only requires one extra iterate to achieve high accuracy (5 iterates
instead of 4), pointing to continuation as an effective strategy for tracing flutter boundaries [5].

Sensitivities of flutter speed are computed for the baseline configuration with respect to 71 quan-
tities: 11 parameters not associated with finite elements [g, ρ, α0, ρs, ycg, yac,M, Iv, Iθ, ζM , ζK ]
and 6 parameters defined for each of the i = 1, ..., 10 elements in the baseline configuration
(where i = 1 corresponds to the inboard element including the wing root and i = 10 corre-
sponds to the outboard element including the wing tip): [[ci] , [ti] , [EI1i] , [EI2i] , [GJi] , [Ioi]].
Sensitivities are computed in the absolute form U∗zi = ∂U∗

∂zi
and then post-processed into a nor-

malized form: n
(
U∗zi
)

= zi
U∗

∂U∗

∂zi
. Normalized sensitivities are computed to show relative im-

portance of the different parameters to the flutter speed (a value of “1” being a large relative
sensitivity); these are provided in Table 3 for the 11 individual parameters and those corre-
sponding to c, and GJ . The latter two parameters are selected since they are aerodynamic and
structural in nature, and since their sensitivities show interesting trends with spanwise position.

In these results, it is seen that structural density and wing-tip-store inertia have the greatest con-
tributions to flutter, positively and negatively, respectively. Other large negative contributions
come from air density and the position of the aerodynamic center, quantities that are relatively
fixed owing to the capabilities of the wind tunnel and the aerodynamic nature of the airfoil sec-
tion. Increasing wing-tip inertia is seen as the most effective way to reduce flutter speed, as was
exploited for tunnel testing [14]. Little sensitivity with respect to the structural damping param-
eters is observed. The normalized sensitivities to element torsional rigidity, GJi, are not nearly
as large as the aforementioned parameters, but are generally larger than bending and in-plane
stiffnesses, and in the correct physical direction. The normalized sensitivity generally dimin-
ishes from root to tip, with deviations to this trend near both points. Sensitivities to sectional
chord values are seen to be largest mid-span, potentially owing to the large participation of the
2nd bending mode in the flutter mechanism, which has a large response in the mid-span region.

In addition to examining the convergence of flutter solutions with respect to the number of fi-
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Parameter, zi n
(
U∗
zi

)
Parameter, zi n

(
U∗
zi

)
Parameter, zi n

(
U∗
zi

)
g 0.034139 c1 0.00031889 GJ1 0.11019
ρ -0.54114 c2 0.0073863 GJ2 0.12021
α0 -0.03729 c3 0.034984 GJ3 0.11831
ρs 0.70357 c4 0.083892 GJ4 0.10550
ycg 0.031422 c5 0.13420 GJ5 0.086342
yac -0.33187 c6 0.15864 GJ6 0.066180
M 0.012155 c7 0.14262 GJ7 0.049526
Iv 8.7548 ×10−5 c8 0.094742 GJ8 0.039421
Iθ -0.60528 c9 0.040566 GJ9 0.037329
ζM 0.016812 c10 0.0062297 GJ10 0.043384
ζK 2.0483 ×10−6 - - - -

Table 3: Normalized sensitivities of flutter speed to parameters for α0 = 2◦ (U∗ = 30.952 m/s).
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Figure 10: Dependence of flutter on α0: (left) flutter speed, U∗; (right) flutter sensitivity ∂U∗
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deflection (m).

nite elements, the authors also examined the convergence of flutter solutions using the original
modal-projection formulation employed by Stanford and Beran [23]. The trends of flutter speed
variation shown in Figure 10 are counter to those reported by Tang and Dowell [14], who also
used a modal formulation. Their experimental and computational data are shown in Figure 11,
along with data collected with the current model and the method reported in [23]. It is observed
that the nature of the flutter boundary is sensitive to the modes that are retained. Some discrep-
ancy exists between [14] and [23] using the same mode sets, which is likely due to differences
in the specific structural damping employed. However, as the formulation of [23] is enriched
with an increasing number of modes, all with the same Rayleigh damping model, the results
display a concave-down trend and begin to match the results obtained with the full finite ele-
ment analysis. Better understanding is required of the damping characteristics of the physical
wing structure at higher modes to better correlate with the experimental results.

The predicted static deformation of the wing is also influenced by the number of modes retained
in the formulation of [23], although in the case of static response, computed results are in good
agreement with experiment. For reference, the bending deflection at the wing tip computed with
the current finite element formulation is compared with the experimental and analytical findings
of Tang and Dowell [14] in Figure 12. Tip deflections are computed for airspeeds up to about
33 m/s, beyond which the numerical analysis fails owing to the strongly nonlinear and divergent
response of the wing. The current method somewhat over-predicts deflections at higher speeds
as the applicability of the weakly nonlinear theory is strained. At U = 33 m/s, finite element
analysis predicts the bending deflection at the tip to be 0.088 m. With this baseline, the authors
find the selection of 4-1-1 (4 flap-wise, 1 edge-wise, 1 torsional) modes, as considered by Tang
and Dowell [14], to not be modally converged: a tip deflection of 0.072 m is predicted. Modal
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Figure 12: Comparison of equilibrium bending (flapwise) deflection produced by current analysis in comparison
to experimental and numerical results reported by Tang and Dowell [14].

refinement improves the results. A set of 4-1-2 modes provides a deflection of 0.084 m, a set of
4-4-4 modes produces a deflection of 0.087 m, and a set of 6-6-6 modes produces a deflection
of 0.088 m, matching the finite-element analysis.

4.3 Significance of Sensitivity of States

One of the virtues of the direct bifurcation analysis procedure is the simultaneous satisfaction of
the equilibrium and dynamical equations. Variation of states through the equilibrium equations
will generally impact the location of the Hopf bifurcation. This variation also has an impact on
the sensitivities of the Hopf point location with respect to problem parameters.

To document how dependence of states on parameters impacts the sensitivity results, a defect
is introduced in the sensitivity analysis procedure. The defect involves the removal of the states
sensitivity term, ∂x

∂zi
, from the Hopf point sensitivity calculation in (14):

∂J

∂zi

∣∣∣∣
x=xeq

p =

(
Jx
∂x

∂zi
+
∂J

∂zi

)
p→

(
∂J

∂zi

)
p. (22)

By modifying the Hopf point sensitivity analysis procedure in this manner, the location of the
computed Hopf point and the values of p are unaffected, and the local dependence of the gov-
erning equations on parameters is still felt through the term ∂J

∂zi
. However, by assuming x is

locally independent of z, significant errors can arise.
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These errors are shown first for the tubular reactor problem. Results are listed in Table 4 for the
Hopf point in the kinetic regime (µ = 0.165). Neglecting ∂x

∂zi
generally has a large impact on the

sensitivity analysis, with the largest impact occurring for the parameter Θ̄, where the defective
analysis yields a vanishing sensitivity value. Large disparities also occur for the cantilevered
wing problem, as documented in Table 5 using absolute sensitivity values. For this problem,
sensitivities with respect to several parameters are unchanged by the defective analysis. How-
ever, two very large deviations are sustained for the parameters root-angle-of-attack and tip
mass, where defective analysis causes a sign change in the sensitivity with respect to the latter
parameter. The authors expected a relatively large deviation in α0 owing to the strong depen-
dence of aeroelastic equilibrium on this parameter and the relatively weak explicit dependence
of J on α0. However, the sign reversal in ∂U∗zi/∂M was not expected. The authors speculate
this change also reflects the dependence of the equilibrium solution, x, on the parameter and
the flutter speed on x, suggesting again that the sensitivities of the equilibrium problem must be
properly accounted for in the sensitivity analysis of Hopf points.

Sensitivity Analysis ∂µ∗

∂Γ
∂µ∗

∂α
∂µ∗

∂Θ̄
∂µ∗

∂β
∂µ∗

∂Pem

∂µ∗

∂Peh
Consistent -0.0145 -0.653 -2.54 0.0750 -0.00501 0.00223
Defective -0.000771 -0.0136 0.0 0.000826 7.83 ×10−5 0.000171

Table 4: Impact of ∂x
∂zi

on sensitivity analysis for the tubular reactor problem (N = 161). Defective analysis
ignores this term in the Hopf sensitivity analysis of the listed parameters.

Parameter, zi ∂U∗
zi
/∂zi (consistent) ∂U∗

zi
/∂zi (defective)

g 0.108 0.0
ρ -13.7 -12.6
α0 -33.1 -3.02
ρs 0.0471 0.0465
ycg -1910. -1910.
yac 809. 785.
M 9.02 -10.6
Iv 1.35 1.35
Iθ -2.27 ×105 -2.27 ×105

ζM 2.60 2.60
ζK 63400. 63400.

Table 5: Impact of ∂x
∂zi

on sensitivity analysis for the cantilevered wing problem (α0 = 2◦; U∗ = 30.952 m/s;
N = 10). Defective analysis ignores this term in the Hopf sensitivity analysis of the listed parameters.
Results reported as absolute sensitivities.

5 CONCLUSIONS

An adjoint-based direct method was developed to compute sensitivities of flutter points with
respect to a large number of parameters in an efficient manner suitable for design optimization.
The methodology was constructed to solve a general class of Hopf bifurcation problems, and
was shown to be effective for computing Hopf bifurcations in a chemical engineering problem
and for flutter of a cantilevered wing with structural and aerodynamic nonlinearities. For the
tubular reactor problem, computed bifurcation solutions and their sensitivities were shown to
converge in accuracy at a rate equivalent to the spatial convergence of the discretization tech-
nique, leading to highly precise estimates. Similarly, spatial convergence was observed in the
prediction of flutter points as wing discretization was refined. A formal verification study was
not conducted, but sensitivity results for the reactor problem compared favorably with finite
difference estimates. The authors recommend verification of the method in a future study.

Bindolino and Mantegazza proposed an adjoint-based direct method for computing aeroelastic

16



IFASD-2017-16

derivatives thirty years ago [3]. What is new to the authors in the current work is the simul-
taneous and efficient treatment of nonlinear equilibrium equations and linearized dynamical
equations, as well as the contribution of the equilibrium equations to the flutter sensitivity when
these equations also depend on the parameters of interest (typically the case). Here, the lin-
earization of the expanded bifurcation equations was recast from a form combining equilibrium
and dynamical state updates [12, 16] into an “equilibrated” form, where an equilibrium solu-
tion is recomputed at each Newton iterate of the dynamical equations. This step increases the
numerical effort allocated to analysis of the equilibrium equations, but yields a compact form
conducive to the computation of the flutter adjoint variables. Previous approaches for flutter
(e.g., [4, 17]) made approximations in the Jacobian of the bifurcation equations to enhance
sparsity, but at the expense of convergence rate and robustness. In the current study, no such
approximations were made, and Newton iterates converged quadratically in a few iterations.

The computational cost of the bifurcation analysis is larger than that of equilibrium analysis,
roughly by a factor of 10, depending on level of precision desired. The authors believe that
this cost is lower than that of time-domain methods (assuming precise bifurcation estimates are
required for sensitivity analysis), and very competitive with frequency-domain methods, such
as the k or p-k methods. However, direct comparisons are needed to test these conjectures,
which the authors intend to pursue. As stated, the computation of one equilibrium solution was
required per iterate of the ECB procedure, although the cost of equilibrium analysis decreased
as convergence to bifurcation points was achieved, since initial guesses were greatly improved.
In addition, a complex linear system of the form (J− iωI)y = b is solved each iterate for three
different source terms, b. The cost of this step is on par with the equilibrium analysis.

The bifurcation software was developed to enable future interface between the ECB solver and
aeroelastic analysis conducted with CFD. Through completion of this study, and the success of
the Sandia LOCA software [11], the authors believe this to be an achievable goal. For CFD-
based aeroelastic analysis, the solution of the equilibrium aeroelastic equations can be con-
ducted with accelerated pseudo-time-domain methods (i.e., not time accurate) with increased
levels of damping to eliminate dynamic instabilities. Such analyses are relatively economical
compared to that of time-accurate aeroelastic simulation. However, requirements are placed on
the CFD solver that are not often met: first, the solver must provide solutions of the frequency
domain problem (J − iωI)y = b, which can be obtained with a linearized, pseudo-time ap-
proach [27], and second, the solver must provide linearizations of f and J with respect to states
and parameters. Modern software exploiting operator over-loading or complex step formula-
tions can provide these linearizations.

The process for computing bifurcation derivatives in the ECB formulation inherits increased
complexity from the equilibration enforced in the bifurcation analysis. The normally inex-
pensive step of computing residual sensitivities, becomes more laborious, since the variation
requires state changes to be accounted for in the calculation. These changes are accounted
for in a forward-sensitivity fashion from the residual equation f = 0 at a cost of one linear
solve per parameter for which sensitivities are desired. These calculations can re-cycle an LU -
factored J, and thus are not expensive, but as the number of parameters grows, eventually the
cost will become significant. Timing studies need to be conducted to quantify the additive costs
of sensitivity analysis as the number of parameters grows.

The bifurcation points computed with the ECB formulation were identical to those computed
with the LOCA methodology reported in [12], as verified by programming this procedure in

17



IFASD-2017-16

the current framework. An adjoint-variable version of the LOCA methodology has not yet been
implemented, but is planned for future study. Adjoints obtained through this alternate approach
should permit faster sensitivity analysis for a large number of parameters.

This paper did not systematically address the question of how to establish initial conditions for
the bifurcation analysis, or the problem of distinguishing between multiple flutter modes. These
issues are related and need to be addressed systematically for the bifurcation procedure to be rel-
evant to the study of industrial problems in aeroelasticity. The appearance of higher order flutter
modes is commonplace in aeroelasticity and without an effective initialization strategy, there is
no guarantee that the direct bifurcation method will identify the critical mode constraining the
stability of the aeroelastic system. Herein, bi-section and eigen-analysis were used to identify
initial conditions close to that of the critical mode. However, if initial conditions close to higher
modes (e.g., as in the tubular reactor problem) are chosen, the ECB method will converge to
this mode instead of the dominant one (e.g., a flutter mode at lower dynamic pressure).

Furthermore, as shown by Stanford and Beran [28], as structural design parameters are changed,
mode switching can occur in a discontinuous fashion, creating significant problems for gradient-
based optimization. Their solution to this problem was to enforce frequency separation con-
straints over a range of flight conditions, which deterred switching but which also required a
tracing of the important eigenmodes. The authors of this paper believe that the ECB method
should be enriched with a tracing strategy to help explore eigen-behavior below and above com-
puted flutter points to assess mode criticality. Similarly, a continuation method is needed [5] to
identify good initial conditions throughout a design space, starting from a single point where
the correct flutter state is well understood.

Lastly, comments on the physical flutter results of the cantilevered wing are provided. As shown
herein, computed equilibrium and flutter behaviors appear to be well converged spatially and
equilibrium responses are consistent with previous experiment and computations. However,
trends of flutter speed with respect to root angle of attack are not in agreement with experiment
and previous computation. This divergence appears to be linked to two factors and maybe a
third: insufficient information about structural damping of modes in the experiment, the manner
in which modes were previously retained in computation, and the range of accuracy of the
Hodges-Dowell equations. The authors observed through a modal convergence study that the
modal-oriented procedure previously reported by Stanford and Beran [23], and applied to the
past wing experiment [14], converges to the current results, and diverges from the experimental
results, when a sufficient number of modes are retained. With an effective sensitivity analysis
procedure, derivatives of structural damping parameters can be computed and used as a means
to infer the impact of uncertainty related to damping.
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