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Abstract: Multiple or nested limit cycle oscillations (LCOs) were first observed in wind tunnel
tests of an unswept supercritical wing in transonic flow, restricted by the supports to two degrees
of freedom (pitch and plunge). In this case the flow was essentially two-dimensional, and the
coexistence of two LCOs of different amplitudes can be explained in terms of the transition
from Tijdeman Type A to Type B shock motion, which limits the energy flow from the fluid to
the structure. For a highly nonsymmetrical wing, the transitions on the upper and lower surfaces
will occur at different amplitudes, resulting in nested limit cycles. Recent computational results
suggest that nested limit cycles should occur for most transonic wings, if the wings exhibit
LCO-type flutter near Mach 1. In this paper, results are presented for flutter cases where 3
nested limit cycles are present in the transonic region. Possible physical mechanisms responsi-
ble for multiple LCOs are discussed, as are the computational and experimental implications.
Calculations indicate that at some Mach numbers one or more of the nested LCOs may become
unstable and eventually disappear by “morphing” into neighboring LCOs. The outer LCO is
also susceptible to amplitude instabilities and may gradually transition into strong flutter. In a
wind tunnel or flight test this could be dangerous, because a small change in Mach number or
dynamic pressure could transform a benign LCO into hard flutter. These observations also have
important computational implications in code verification and validation.

1 INTRODUCTION
Wind tunnel flutter tests at DLR in Göttingen [1-2] of a “two-dimensional” wing with an NLR
7301 supercritical airfoil have demonstrated that transonic limit cycle flutter can and does occur
even in the absence of noticeable flow separation or structural nonlinearities. These flutter tests
have also shown that complex and highly nonlinear flutter behaviors appear even at relatively
small flutter amplitudes. An intriguing result was the discovery of two “nested” LCOs, with dif-
ferent amplitudes, coexisting at the same Mach number and angle of attack, Fig. 1. It was
observed that a transition from the “lower” to the “upper” LCO (and vice versa) could be accom-
plished by applying relatively small force perturbations in the plunge direction, either in-phase
or out-of-phase with the plunge velocity at the elastic axis, thus providing short bursts of nega-
tive or positive structural damping.   

The fundamental physical mechanism behind the observed multiple limit cycles cannot be
attributed to viscous effects, because the LCOs also show up in Euler-based calculations. It was
concluded in Ref. 3 that the lower (upper) LCO is caused by the shock motion on the lower
(upper) surface of the wing undergoing a transition from Tijdeman Type A (continuous) to Type
B (intermittent) motion, which results in a rapid decrease in the aerodynamic work on the wing.
For wings with highly nonsymmetrical sections, such as the supercritical NLR 7301 wing, two
nested limit cycles of different amplitudes should occur, since the Type A to B shock transitions
will occur at different amplitudes on the upper and lower surfaces. 
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Similar low-amplitude transonic limit cycle flutter was later observed during wind tunnel tests
at DLR of a high-aspect-ratio swept wing [4]. Because the LCO-type flutter was encountered at
an angle of attack and lift coefficient close to design, it cannot be classified as stall flutter, nor
is it evident from the experimental data that trailing edge separation played a significant role.
Based on calculations on similar a generic transport wing (the G-Wing), we have concluded that
the LCO-type transonic flutter observed on the Göttingen wing should also be expected for other
swept wings of high aspect ratio and similar flexibility [5]. Surprisingly, the G-Wing also has
two nested LCOs over a range of transonic Mach numbers. Although no evidence of multiple
LCOs was reported in the wind tunnel tests of the similar Göttingen wing, it should be noted
that special initial conditions would be necessary to discover the outer LCO. Unless a suffi-
ciently large initial disturbance is provided, the aeroelastic response will gravitate to the lower-
amplitude inner LCO.

To our knowledge, no previous theoretical or experimental investigations have found more than
two limit cycles at the same Mach number [6]. We have recently discovered several such cases,
where 3 nested limit cycles are present at transonic Mach numbers. The main objectives of this
study are to (1) investigate the physical mechanism(s) responsible for the appearance of multiple
nested limit cycles of wings at transonic conditions; (2) to identify the main parameters affecting
the qualitative and quantitative aeroelastic behaviors; and (3) to consider the theoretical and
experimental implications of our findings.

2 FLUTTER NEAR MACH 1

2.1 Mixed subsonic-supersonic flows 

Transonic flow over aircraft wings is inherently nonlinear, even in the limit of small distur-
bances. By inherently nonlinear, we mean that there is no uniformly valid linear first-order equa-
tion for steady or unsteady transonic flows. Two types of nonuniformities occur: nonuniformi-
ties with respect to a parameter, such as the Mach number, and nonuniformities with respect to
the coordinates (time and space). By nonuniformities in this context we mean a mathematical
breakdown of the solution for certain values of a parameter, or for certain regions of space-time. 

There is a fundamental difference between the supersonic region(s) in transonic flow and lin-
earized supersonic flow. In linear supersonic flow, the characteristics (Mach waves) are straight
lines with a constant slope, and only one set of characteristics is allowed on the upper or lower
airfoil surface, in order to satisfy the radiation condition; i.e., disturbances must propagate away
from the wing in the far field. In the transonic case, Fig. 2, both families of characteristics are
present in the supersonic pocket(s), one set representing expansion waves and the other com-
pression waves. The slopes of the characteristics change as one moves away from the airfoil
surface and become vertical at the sonic line. From this behavior and the fact that the spatial
extent of the local supersonic or subsonic region is not known but must be determined as part
of the solution, it is clear that linear equations cannot describe the physics of a mixed flow. 

Figure 1: Multiple (nested) limit cycles observed during flutter test of an NLR 7301 wing model at DLR [1].
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2.2 Mach number freeze
The Mach number freeze is brought about by a nonuniformity in the aerodynamic solution at
infinity. It is a direct consequence of the fundamental change that must occur in the far field as
the Mach number passes through one, and not by any near-field changes around the wing. Con-
sequently, it is only weakly influenced by changes in the local flow caused, for example, by
shock-boundary layer interactions and flow separation behind the shocks.

In a sonic flow ( ), Fig. 2b), the supersonic regions extend to infinity, as do the sonic
lines and the trailing-edge shocks. A limit Mach wave (characteristic) appears on the upper and
lower surfaces, which is asymptotic to the sonic line at infinity. These Mach waves divide the
flow-field into two regions: an upstream region that can influence the upstream flow, and a
downstream region that can not. Because the flow-field behind the limit Mach waves cannot
influence the flow in front of these waves, it is similar to a supersonic flow-field. From this it
follows that the far field must change, from a dominant vortex (circulatory) term fixed by the
lift on the wing, to a source-like far field without circulatory terms; see Cole [7].

As long as , the far field is subsonic and the dominant term is a vortex term given by the
lift. At Mach 1, this far field disappears and is replaced by a similarity form corresponding to

 [8]. If we model the flow as a small perturbation about the perfectly sonic flow, a non-
uniformity at infinity will appear. Near to the wing or body, on the other hand, the solution is
valid and from it one can deduce the important law of stabilization or Mach number freeze,

 (1)

which has important implications in aeroelastic problems.

The practical importance of the Mach number freeze in an aeroelastic setting arises from the fact
that the flow near the airfoil ahead of the shock(s) can be considered a small perturbation of a
sonic flow. Because the local Mach number freezes, the pressure on the airfoil surface ahead of
the shock also freezes and becomes “stabilized” for freestream Mach numbers close to one.
Using the method of matched asymptotic expansions, Cook and Zeigler [9] showed that the local

Figure 2: Comparison of flow regions in transonic flows for  (2D inviscid case).Mcr M 1
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Mach number differs from that at sonic flow ( ) only by terms of order , where  is
the transonic similarity parameter*

 (2)

Here  is the thickness-to-chord ratio, and  is the ratio of specific heats.Thus, in the
freeze region, the local Mach numbers on the upper and lower surfaces ahead of the shocks are
given by

 (3)

where  is the nondimensional chordwise location on the airfoil and the subscripts u,l denote
the upper and lower surface, respectively. Since  at , Eq. (1) follows.

The airfoil pressure coefficient can be expressed in terms of the local and freestream Mach num-
bers, and making use of Eq. (3), we conclude that the stabilization of ,  and  ahead of
the shocks are of the same form:

 (4)

for fixed angle of attack and . Here  is the corresponding freeze Mach
number at which both the upper and lower shocks have reached the trailing edge; see Fig. 3.

Because the freeze only occurs ahead of the shocks on the upper and lower surfaces, a complete
stabilization of the lift and moment coefficients does not occur until the shocks have reached
the trailing edge. The scaling with respect to airfoil thickness follows from Eq. (2), keeping 
fixed. For example, as the thickness  is reduced from 12% (NACA 0012) to 6% (NACA
0006), the freeze Mach number increases from 0.90 to 0.935. For the 3% thick NACA 0003 air-
foil, the transonic similarity rule predicts a freeze onset at about Mach 0.958, Fig. 3d). 

* In [8] an older form K of the similarity parameter was used, which has  set equal to 1.
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In [10] we made the following argument for the stabilization of lift and moment coefficients in
unsteady flow. Consider a 2D airfoil section executing simple harmonic motion in pitch:

 (5)

For small amplitudes, the corresponding unsteady pressure coefficient can be written as the sum
of the mean (average) coefficient and the unsteady oscillation about the mean:

 (6)

where the amplitude  is considered complex to take care of any phase differences. In the
freeze region, near Mach 1, the mean flow would become stabilized and  would freeze. For
low reduced frequencies k, one would also expect the unsteady part to become stabilized as well,
since in the quasisteady limit  the motion can be considered a sequence of almost steady
equilibrium states, with corresponding quasi-steady flows. Using this argument, one would
expect that the unsteady  and thus also the unsteady  and  should freeze in roughly
the same Mach number region as in steady flow.

Figure 4 shows results of unsteady Euler calculations for pure pitching oscillations about mid-
chord for the NACA 0012 and NACA 0006 airfoils, as a function of reduced frequency and
Mach number. The Mach number freeze phenomenon is clearly evident and leads to the
expected stabilization of the unsteady lift amplitudes for , where  depends
on the airfoil thickness and is of the order . The stabilization of the moment
amplitude and phase is quite strong, and the onset of the freeze region is in good agreement with
theoretical predictions. Also note that the aerodynamic phase becomes positive over a narrow
range of transonic Mach numbers immediately before the freeze, indicating a SDOF torsional
instability. The lift coefficient (not shown) also freezes [10]. It should be obvious that the
strongly nonuniform behaviors of the lift and moment coefficients close to the Mach number
freeze pose a challenge to the experimentalist as well as to anyone trying to validate CFD codes. 

The influence of the Mach freeze on flutter was also considered in [10], using a 2D typical sec-
tion model. In the Mach number freeze region,  and  differ from the corresponding values
at sonic conditions by terms of order . Thus, the nondimensional unsteady aerodynamic load
vector freezes around the loads corresponding to , to order :

 (7)

where  is the speed of sound at SLSD conditions,  is the absolute temperature
ratio, , , , and the standard Theodorsen notation has been
used. For Mach numbers close to one, from  to slightly beyond 1, the flutter boundary
should be only a weak function of the free-stream Mach number. To keep the scaling factor in
Eq. (7) frozen, we need

 (8)

If the temperature is kept constant, this means that the critical mass ratio at flutter in the freeze
region should scale as ; that is,  The dynamic pressure at flutter would
then become frozen as well. However, the anomalous mass ratio scaling in the transonic region
must also be considered in this context [11].
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3 COMPUTATIONAL APPROACH

3.1 Direct FEM time-marching calculations
The computational model is based on a nonlinear finite element formulation of the fluid-struc-
ture system, implemented using a Galerkin finite element discretization of the Euler equations
in the fluid domain and Mindlin-Reissner finite elements in the structural domain. The approach
is a generalization of the Direct Eulerian-Lagrangian computational scheme, in which the cal-
culations are done at the finite element level in both the fluid and structural domains [12]. The
generalized forces associated with the in-plane and out-of-plane degrees-of-freedom are calcu-
lated in a local element-fixed Lagrangian coordinate system that fully accounts for large rigid
body translations and rotations, thus removing the amplitude restriction inherent in the von
Kármán plate theory.

The wing structure consists of a flat aluminum plate of the wing planform, covered with hard
plastic foam to form the desired airfoil shape. This type of model construction was used in sev-
eral early studies of transonic flutter at NASA Langley, such as the study of the effect of wing
thickness on the transonic flutter boundary, by Doggett et al. [13]. It was also used more recently
in the MAVRIC flutter model tested by Edwards et al. [14].
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A multistage Runge-Kutta scheme is used to integrate the space-discretized system of nonlinear
equations forward in time. Time accuracy is maintained by time-marching the fluid and struc-
tural finite element equations simultaneously, within the same 5-stage Runge-Kutta execution
loop. Finite rotation relations are used to update the nodal displacement vectors at each stage,
and the aerodynamic force vectors are calculated as follower forces, resulting in a more accurate
prediction of the aeroelastic response. The exact nonlinear boundary condition at the wing sur-
face is satisfied using the actual deformation of the wing, as defined by the finite element shape
functions and the local element coordinates. For further details, see Ref. 15.

3.2 Flutter mode identification

To identify the aeroelastic modes involved in the LCOs, we project the time-accurate FE vector
of generalized displacements on the linear eigenspace of natural modes. With this decomposi-
tion, we can calculate both the modal amplitudes as well as the kinetic energy contributed by
each natural mode. This allows us to classify coupled aeroelastic modes where three or more
modes contribute, which would not be possible based on the observed flutter frequencies alone.
It has also been valuable in understanding "bursting" and "pseudorandom" flutter, where no sin-
gle coherent flutter frequency emerges and the "modal content" of the nonlinear flutter mode is
a function of time and often varies significantly over each flutter cycle.

3.3 Aerodynamic work calculations
In the nonlinear aeroelastic code used in the present study, time-accurate calculations of the net
aerodynamic work  per flutter cycle are carried out as a function of span location, at a total
of 22 stations. The aerodynamic work data include the chordwise distribution of the aerody-
namic work done by the fluid on the wing, per unit time and unit area. From this data it is pos-
sible to identify which wing sections extract energy and which sections dissipate energy. On a
3D wing, however, the aerodynamic work does not vanish at all span locations during an LCO
flutter period; instead a balance is established between the positive and negative work such that
the overall net aerodynamic work done on the wing is zero. Because this balance is sensitive to
the local flow states in the stable and unstable regions, it is not surprising that the LCO ampli-
tudes can be greatly affected by the presence of wing-mounted missiles and other stores, as expe-
rienced on the F-16 aircraft, for example.

In the strongly nonlinear transonic region, the LCOs usually arise from a delicate balance
between the positive aerodynamic work done on the inner 60-70% of span and the negative work
done on the outboard 30-40% of span (tip region). The boundary between the stable and unstable
regions defines the neutral section, where the net work by the aerodynamic forces is zero over
an LCO cycle.   

By calculating the net aerodynamic work done when the wing is vibration in a pure natural
mode, one can identify natural mode instabilities. If the work done is positive, the natural mode
is unstable; if negative, it is stable. The aerodynamic work depends not only on the mode (1B,
2B, 1T, etc.), but also on the Mach number and the reduced frequency. If one considers a Mach
number sweep at constant temperature, then the reduced frequency will vary inversely with the
Mach number.

4 COMPUTATIONAL RESULTS - NESTED LIMIT CYCLES 

4.1 Swept transport wing (G-wing)
The G-wing [5] (Fig. 5) is closely similar in planform to the wind tunnel model studied in Ref.
4, except that the two small trailing-edge kinks have been ignored. The airfoil section is the 10%
thick ONERA “D” airfoil rather than the supercritical airfoil of the Göttingen wing [4]. 

WA
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For swept wings of high aspect ratio, the structural washout mechanism has a strong influence
on the wing streamwise pitching motion, and the effect on flutter can be profound and in some
cases counterintuitive. In the case of the G-wing, a complex LCO-type flutter behavior was pre-
dicted by our calculations, involving two coexisting or nested limit cycles over a range of tran-
sonic Mach numbers between roughly 0.84 and 0.96 (Fig. 5). At Mach 0.97, both the inner and
outer limit cycles “evaporate” and the wing amplitudes decay to zero, Fig. 5i). Around Mach
0.99, a second bending (2B) LCO reappears over a narrow Mach number region; see Figs. 5a)
and 6.

The sudden quenching of the primary nested LCOs at Mach 0.97 is believed to be caused by the
Mach number freeze phenomenon and the resulting transonic stabilization [10]. No plausible
alternate physics-based explanations for the abrupt reversal of the LCO flutter amplitudes have
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been found. The transonic stabilization of a swept high-aspect-ratio wing such as the G-wing is
a three-dimensional mechanism. When the shocks on the inboard unstable section of the wing
approach the trailing edge and the Mach number freeze sets in, the ability of the wing to extract
energy from the airstream is severely reduced and eventually completely eliminated. This upsets
the work balance between the inboard (unstable) and outboard (stable) region, resulting in a
rapid and abrupt quenching of the LCOs. These “primary” LCOs are predominantly 1B branch
instabilities (coupled 1B-1T). However, in the case of the second bending mode LCO, the situ-
ation is reversed: the tip region extracts energy and the inboard region dissipates energy. There-
fore, the 2B LCO instability is not quenched until the shocks in the tip region get close to the
trailing edge, which happens around Mach 0.991, Fig. 7. 

4.2 ONERA M6 wing

Recent unsteady calculations for the aeroelastic model for the ONERA M6 wing studied previ-
ously in [12] have revealed similar reversals in the amplitudes and phases of the generalized
aerodynamic forces associated with the natural modes of the wing. The first three modes are
shown in Fig. 8. Aerodynamic work  calculations indicate that ESDOF flutter instabilities
are possible in the 1B, 1T, and 2B modes, for sufficiently low reduced frequencies; see Fig. 9.
Surprisingly, the 5th and 7th modes also revealed instabilities just below Mach 1 (not shown).
Also note that the instability regions differ for the individual modes and in the case of the 2B
mode extends into the freeze region for very low reduced frequencies.     

Figure 10 shows representative plots of the calculated aeroelastic response of the wing at Mach
0.85 at an air density of , verifying that the 1B mode is indeed weakly unsta-
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ble, as indicated in Fig. 9. The corresponding dynamic pressure is only 418.3 Pa (8.74 psf), and
corresponds to a density altitude of more than 100,000 ft. In these calculations, the full FE struc-
tural model was used. This and other examples show that, at Mach numbers where modal insta-
bilities are possible, the flutter boundary extends down to very low densities, corresponding to
altitudes well into the stratosphere.         

 As the density or dynamic pressure is increased, the flutter mode gradually changes into a cou-
pled bending-torsion mode wherein 1B still dominates, and the flutter instability becomes stron-
ger. At Mach 0.95, the 1B, 2B, and 1T modes are all unstable at low reduced frequencies. Nested
limit cycles in the 1B, 2B, and 1T modes would therefore be possible at and around Mach 0.95,
under the right conditions. In a wind tunnel flutter test, one would expect to see weakly unstable
LCOs at low dynamic pressures, which in the presence of structural damping might become
weakly damped LCOs. At higher dynamic pressures/densities, strong bending-torsion flutter

Figure 8: Contour plots of first three modes of the ONERA M6 wing.
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would be expected. This situation is qualitatively similar to that observed in the wind tunnel
tests of several different swept wings reported in [14,16-20]. 

4.3 Advanced fighter wing (FX-wing)

The FX wing planform is representative of 5th and future 6th generation fighters, with a LE
sweep of 35 deg, a TE forward sweep of 11.7 deg, and a taper ratio of 0.245. The aspect ratio is
2.67. The first four mode shapes are shown in Fig. 11 and display the plate mode features typical
of low aspect ratio fighter wings. 

Calculations show that the FX wing has multiple or nested limit cycles at Mach numbers near
one. In most cases the "inner" low-amplitude LCO is essentially a natural mode instability in
the second bending (2B) mode of the wing, whereas the "outer" high-amplitude LCO is typically
a coupled mode dominated by first bending (1B). Aerodynamic work  calculations indicate
that ESDOF flutter instabilities are possible in the 2B mode, but not in the 1B or 1T modes. At
Mach numbers where nested LCOs are possible, the flutter response becomes sensitive to initial
conditions. If the initial disturbances are sufficiently small, the flutter mode is attracted to the
inner low-amplitude LCO. At small to moderate air densities (or dynamic pressures), the outer
LCO can only be reached through a sufficiently large initial disturbance, or from the inner LCO
if a short burst of negative damping is introduced via a suitable control parameter. At high
dynamic pressures, the long-term aeroelastic response typically converges to the outer LCO.
However, if the initial condition is in the 2B mode, the flutter response can be made to converge
to the inner LCO even at moderately high dynamic pressures.          

Figure 12 shows the presence of 3 nested LCO at Mach 0.99. The outer LCOs are dominated by
the 1B mode, coupled nonlinearly to the 1T and 2B modes. In a) the inner LCO is a small 1B-
2B mode and the intermediate LCO is a 2B mode. Only the 2B mode is unstable as a natural
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Figure 11: First four modes of the FX-wing model ( in).cr 40=

6.785 Hz                             24.788 Hz                              33.675 Hz                            63.241 Hz
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mode (Fig. 12), thus the other two nested LCOs are coupled modes where the 2B mode is the
driver at low dynamic pressures. In b) and c), the inner LCO is a weakly unstable 2B mode and
the intermediate LCO is a complex and highly nonlinear 1B-2B-1T coupled mode.             

Figures 13-15 shows detailed plots of the flutter modes involved in the 3 nested LCOs at Mach
0.99 and an air density of , corresponding to a dynamic pressure of

psf. The time traces of the bending displacements at the wing tip leading and trailing
edges reveal a modulated LCO, resulting from nonlinear interactions between two or more
modes. These are nonclassical flutter modes where the structural modes participating do not
become synchronized and a distinct flutter frequency does not emerge.

Figure 13 reveals a complex banded structure in the phase plots, most likely arising from motion
on a torus in phase space. The initial conditions are in the first bending (1B) mode and the
aeroelastic calculations cover about 116 seconds of real time (2,875 in nondimensional time).
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Figure 14 shows the same case, but started from a converged multimode LCO at a lower density
( ) that had completed roughly 51.8 seconds (1,284 in nondimensional time).
The run continues for an additional 112 seconds, of which only the last 4 seconds are shown in
the figure. The wing tip displacement time traces look similar to those in Fig. 13, but the phase
plots clearly show a different dynamical mode. The LCO is a coupled 1B-2B mode. Again, the
flutter mode appears to represent motion on a torus. 

Figure 15 shows the case with the initial conditions in the second bending mode. The initial
response (not shown) is essentially a clean 2B LCO, which through weak nonlinear interactions
with the 1B mode (and to a lesser degree the 1T mode), converges to the multimode LCO shown
in the plots. The mode differs from the previous two in that the plot of the kinetic energy T is
very “clean”, with a definite amplitude and no temporal spikes.
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Figure 14: Same case as in Fig. 13, except for initial conditions. Calculations were started from a run at
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4.4 Natural mode instabilities of flexible wings
Several instances of what appears to be "natural mode LCOs" have been observed in wind tunnel
and flight tests [14,16-20], and several possible explanations of the physical mechanisms behind
the instabilities have been put forth. In the B-1 case, the initial explanation [16] in terms of
shock-induced separation was later changed to a (LE) vortex-induced instability [17]. In the
wind tunnel tests of the elastic supercritical wing reported in [18], the observed bending mode
LCO at high transonic Mach numbers was attributed to intermittent separation and reattachment
of the flow in the trailing edge region behind the shock. During transonic wind tunnel tests of
the HSCT wing [19], a region of "increased response" in the first bending mode was noted, and
a narrow "chimney" of LCO-type flutter was observed around Mach 1. Similar narrow regions
of natural mode instabilities in 1B, 1T, and 2B were also observed during wind tunnel testing of
the MAVRIC wing [14].
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Figure 15: Second bending LCO with weak nonlinear interactions with 1B and 2T modes (FX-wing at Mach 0.99
and ; 59.3 psf). Initial conditions in 2B mode. Simulation covers about 70.6 seconds. 0.05 kg m3=



IFASD-2017-015

-15-

These experimental results share certain important traits:

1. The LCO-type instabilities require transonic (mixed) flows and are not observed in purely
subsonic or supersonic flows.
2. The LCO amplitudes show a marked sensitivity to angle of attack, especially in the case of
highly swept wings representative of supersonic planforms.
3. The instability region for a given natural mode is narrow, and the mode usually becomes
stabilized by a small increase in Mach number.

Strictly speaking, no “pure” SDOF flutter instabilities are possible in 3D, because aeroelastic
deformations will alter the flutter mode slightly, and the flutter will therefore not be SDOF flutter
as in the 2D typical section case. However, in the limit as the air density goes to zero, the mode
approaches the corresponding natural mode asymptotically, and if unstable, will essentially cor-
respond to a SDOF instability in a single natural mode of the wing. It seems appropriate to call
this type of modal instability Essentially Single-Degree-of-Freedom (ESDOF) flutter [21].

As in the case of the ARW-2 wing, it is difficult to explain the narrowness of the LCO chimneys
without invoking the Mach number freeze and the associated stabilization of the unsteady aero-
dynamic forces acting on the wing. In [14] it is concluded that the LCO behavior “appears to be
due to a very fine balance of forces on the wing, occurring at conditions of intermittent flow
separation over wing regions of dominant modal motions (e.g., the wing-tip region here for the
first bending and torsion modes).” It is not clear if the authors are referring to the aerodynamic
forces only, or to the sum of aerodynamic, structural, and inertial forces (which of course must
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a) Converged large-amplitude 1B LCO from 1B i.c. (about 20 seconds elapsed time).

b) Converged large-amplitude complex mode from 2B i.c. (about 68 seconds of elapsed time). 

Figure 16: Illustrating sensitivity to initial conditions at transonic conditions (FX-35 NACA 64A006
TDT model;  ;  psf).M 0.99=  0.10 kg m3= q 118.52=
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balance as required by the momentum conservation laws and d’Alembert’s Principle). The aero-
dynamic forces by themselves are not in balance, but for a clean LCO with a fixed amplitude
the net aerodynamic work done by these forces must balance over an LCO cycle; i.e.,

. For a “dirty” LCO, where the amplitude is only constant in a statistical average sense
over a time interval T containing many LCO periods, and where the LCO frequency may not be
clean either, one can invoke the Bohr theory of almost periodic (a.p.) functions [22] and take the
average in the limit 

 (9)

If  approaches a fixed value, it seems reasonable to assume that the aeroelastic oscillations
define an LCO in an average a.p. sense.

Calculations of  for a swept transport wing similar to the MAVRIC (the G-Wing) show
that the situation is more complex than assumed in [14]; see [21]. The inner and outer LCOs in
the Mach number range 0.84-0.96 are in fact the result of a delicate balance of  over the
span of the wing, but  does not vanish at all span locations. Instead, there is overall “inte-
grated” spanwise balance over the wing during LCO-type flutter. This type of spanwise work
balance is not possible in 2D, i.e., for a typical section wing model.

4.5 Flutter mode transitions

Figure 17 shows a "secular" (very slow) aeroelastic mode transition from the 1B mode to the
2B mode for the FX-NACA 64A006 wing model at Mach 0.92. At this Mach number, the 1B
mode is stable, but the 2B mode is unstable. From linear aeroelasticity theory, one would expect
the 2B mode to emerge immediately, independent of the presence of the 1B mode, but this does
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Figure 17: Secular aeroelastic mode transition from 1B to 2B at Mach 0.92 and ;
psf (FX-NACA 64A006 TDT wing model).
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a) First 10 seconds after initial conditions in 1B mode        

b) Final convergence to 2B LCO after almost 40 seconds.        
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not happen. Instead, the 2B instability appears quenched by the 1B mode, until the 1B ampli-
tudes have decayed to near zero (after about 7-8 seconds). As can be seen from the figure, it
takes almost 40 seconds to reach the final 2B LCO amplitude. In all figures in this paper, time
is nondimensionalized with respect to the period of the first torsion (1T) mode. For the FX -wing,
this translates to about 4 seconds for each nondimensional time interval of 100. 

As expected from the transonic similarity laws, the 2B instability region depends on the airfoil
thickness. For the FX-wing model with an NACA 64A003 airfoil, aerodynamic work calcula-
tions indicate that the unstable region starts around Mach 0.942 and ends around Mach 1.23.
With the NACA 64A006 airfoil, the unstable region is between Mach 0.907 and 1.16. The
change in the start of the 2B instability between the two airfoils is in good agreement with the
predictions of the similarity laws; however, the supersonic ending Mach number for the NACA
64A003 airfoil is somewhat higher than expected from the similarity rules. This may be caused
by a nonlinear reduced frequency effect.

Figure 18 shows typical flutter behavior of the FX-wing in the chimney around Mach 1. At low
densities, the second bending (2B) mode dominates, with the first bending mode (1B) emerging
as the density is increased. In the middle of the chimney, around Mach 1, rapid changes in the
flutter mode are observed. With increasing density or dynamic pressure, a transition to a strong
coupled 1B-2B flutter mode occurs inside the chimney; see Fig. 18. Because the coupling
between the modes is essentially nonlinear, through aerodynamic and structural nonlinearities,
the phase plots are not representative of "clean" limit cycles as observed in classical nonlinear
dynamical systems. The structural modes participating are not synchronized and a distinct flutter
frequency does not emerge. However, the modal decomposition procedure described in Sec. 3.2
can still be used to identify the modes participating and classify the flutter mechanism(s)
involved.

4.6 Nonstationary "bursting" flutter

At some combinations of Mach numbers and dynamic pressures, a "bursting" or "pseudoran-
dom" response occurs (Fig. 19). There may be several causes for nonstationary or "stochastic"

Figure 18: Typical chimney physics showing transitions
from natural mode LCO instabilities to strong coupled flutter
with increasing dynamic pressure or density (FX-wing). 
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flutter. In the results obtained in this study, we believe that the main driver is a strongly nonlinear
interaction between 2 or 3 modes of the wing, which is nonclassical in the sense that the
aeroelastic response of the coupled modes never become synchronized, as in classical linear flut-
ter. Bursting or pseudorandom flutter was observed during testing of a 2D supercritical wing at
DLR [23], and during testing of the MAVRIC wing at NASA Langley [14].  

4.7 Physical mechanisms behind nested LCOs
To date, explanations for the often complex LCO instabilities seen in wind tunnel tests at tran-
sonic Mach numbers have largely been based on visual observations alone (e.g., of shock-
induced separations, etc.). However, necessary and sufficient conditions for these instabilities
cannot be based entirely on visual observations, but must ultimately be based on energy/aero-
dynamic work considerations. That is, the proposed instability mechanism must be capable of
extracting net energy from the airstream over a suitable time scale, such as one period of oscil-
lation. Furthermore, the instability mechanism must depend on the flutter amplitudes so as to
throttle the aerodynamic work and produce an LCO rather than exponentially growing flutter.

Within this framework, any hypothetical LCO mechanism can be tested computationally as well
as experimentally, by determining whether it results in  (destabilizing) or 
(stabilizing) upon its introduction. Of course, an experimental verification would be quite chal-
lenging because of the extensive instrumentation needed to obtain the required time-accurate
unsteady pressures and wing surface displacements and velocities. The data obtained on the
ARW-2 and the MAVRIC wings, although extensive by past aeroelastic testing standards, are
not sufficient to make such calculations possible. In addition to time-accurate unsteady pressure
data, one would need time-accurate displacement and velocity data on the wing surface collo-
cated with the pressure measurements.

Based on the results of this study to date, we have identified three primary mechanisms:
1. Natural mode instabilities ahead of the Mach freeze.
2. Coupled or ESDOF aeroelastic modes with spanwise aerodynamic work balance and 

where a neutral section exists (only possible for 3D wings).
3. Nonlinear interactions between two or more modes where  exists only in a 

stochastic sense; see Eq. (9).

5 CONCLUDING REMARKS

There are several computational as well as experimental implications of the observed multiple
nested limit cycles. First, calculations to date indicate that the whenever two or more nested

Figure 19: Bursting or pseudorandom flutter response at Mach 1.02 and high dynamic pressure
(FX-wing; ;  psf; ). 0.20 kg/m3= q 257.6=  0=

WA 0 WA 0
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LCOs are present, the lower LCO often becomes unstable (or semistable) in a certain Mach num-
ber range, essentially vanishing, or having such a narrow basin of attraction that it is for all prac-
tical purposes unobservable. Different codes using different CFD algorithms would most likely
obtain different LCO stability behaviors, which could result in some codes marching past the
weakly attracting lower LCO and converging to the outer LCO.

Second, extended flutter calculations show that the upper LCO may become unstable, even if
the lower LCO is stable. In an experimental setting (wind tunnel or flight test), this could be
dangerous, because a small change in Mach number or dynamic pressure could transform a
benign LCO into hard flutter.

Third, the existence of multiple LCOs and the possible morphing between semistable and stable
LCOs brings up important code verification and validation issues. The logical separation of the
verification step (solving the equations right) and the validation step (solving the right equa-
tions) breaks down, and the two steps may become impossible to separate from a practical stand-
point. The experimentalist is faced with similar difficulties in trying to understand the flutter test
results and “validate” the experimental data. In aeroelastic systems exhibiting multiple LCOs
sensitive to initial conditions and control parameters, this is a daunting problem that may require
new experimental and computational techniques.

It seems reasonable in a paper that deals with multiple limit cycles to mention Hilbert’s 16th

Problem, and attempt to learn from more than a century of research on this apparently simple
problem. Although referred to as a two-dimensional problem in the mathematics literature, it is
a single-degree-of-freedom problem from a dynamics standpoint, with an analytic right-hand-
side. In state-variable form, the two equations have right-hand sides consisting of polynomials
of degree n. Hilbert’s 16th problem is concerned with determining the upper bound on the num-
ber of limit cycles possible for a given polynomial degree n. This problem has not been solved
yet, even for low values of n. According to a conjecture by Dulac [24], the number of limit cycles
of a two-dimensional system with an analytic right-hand-side is finite, whatever its number may
be. For a long time, it was believed that a quadratic system (n = 2) could at most have 3 limit
cycles, but in 1980 [25] a counterexample with 4 limit cycles was constructed. If a SDOF system
with analytical forces and algebraic nonlinearities cannot be understood from a theoretical
standpoint, what hope is there for the general multi-degree-of-freedom nonlinear aeroelastic
problem, where the unsteady aerodynamic forces are not analytic functions of the state of the
system, except in simple quasisteady or truncated (finite state) aerodynamic models?
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