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Abstract: The paper presents a computational methodology for CFD-based flutter analysis
that is based on system identification of the aeroelastic system at few sub-critical dynamic
pressures. Autoregressive Exogenous (ARX) models of the aeroelastic system are estimated
based on simulated aeroelastic modal responses to prescribed excitation of time-varying vertical
velocities. A linear stability parameter of the system is computed for each dynamic pressure,
and, by extrapolation, points to the flutter conditions. The method was demonstrated on three
test cases of subsonic airfoil flutter (2 DOF plunge and pitch aeroelastic system), transonic
airfoil flutter (2 DOF plunge and pitch aeroelastic system), and a generic transport aircraft at
subsonic flow, with flutter mechanism involving three structural modes. In all cases the method
resulted in accurate predication of the flutter point as compared to either full CFD aeroelastic
simulation, or wind tunnel test results. The method is computationally efficient, as it only
requires a single aeroelastic simulation, at two to three dynamic pressure values, to predict the
flutter point (for each Mach number). The paper describes the methodology, and discusses the
details of its application, its advantages, and shortcomings.

1 INTRODUCTION

Flutter analysis in the production environment is typically based on linear models, where the
structure is modeled via a finite-element model, and the aerodynamics via a linear panel code.
The main deficiency of linear panel codes is their inability to accurately estimate the unsteady
aerodynamic forces, and, consequently, the flutter point, in the transonic regime.

Computational Fluid Dynamics (CFD) codes can accurately predict the flow field about com-
plex realistic configurations in all flight regimes, and were used formerly for flutter analyses.
Two approaches for CFD-based flutter analysis include the direct transient-response analysis,
and the indirect approach that involves identification of reduced-order models (ROM) of the
unsteady aerodynamics. In the direct approach, the flow and structural dynamics equations are
coupled in time-marching aeroelastic simulation. Instabilities can be predicted by performing
several such simulations, studying each transient for decaying or diverging response (e.g. 1, 2).
Since aeroelastic simulations of realistic complex configurations require large computational
resources, they cannot provide a viable methodology for production flutter analysis. The indi-
rect approach looks for reduced-order models (ROMs), either linearized or nonlinear, for the

1



IFASD-2017-7

unsteady aerodynamics, which can then be coupled with the structural dynamics for transient
response simulation, or can be used in stability analyses (e.g. 3–6).

The current study adopts concepts of aeroelastic system identification and flutter prediction
from flight test methodologies, and applies them to CFD-based flutter analysis. In flutter flight
tests, the dynamic characteristics of the aeroelastic system are interpreted from measured air-
craft structural responses to external excitations, at sub-critical conditions (pre-flutter/LCO).
Similarly, in the simulation environment, the aeroelastic system characteristics can be derived
from simulated structural responses to some prescribed excitations, at pre-flutter conditions. In
the simulation environment the focus is, naturally, on computational efficiency.

Over the years, several flutter flight testing methodologies were developed that rely on various
excitation techniques, system identification and estimation methods, system stability parameters
and flutter boundary prediction methods [7–15]. The Autoregressive Moving-Average (ARMA)
method, originally suggested by Matsuzaki and Ando [9], uses system identification methods to
fit an ARMA model that describes the aeroelastic system at sub-critical conditions. A linear sta-
bility parameter, computed from the ARMA model according to the Jury criterion, indicates the
flutter/LCO onset. In flutter flight tests the advantage of the ARMA method is that the ARMA
model coefficients are identified from structural responses to atmospheric turbulent excitations,
without resorting to external excitation. This discrete-time method assumes the probabilistic
distribution and frequency content of the excitation to be normally-distributed random white-
noise, thus arguably suitable to describe natural air turbulence excitation. In the CFD-based
simulation environment the equivalent of atmospheric turbulence excitation can be any pre-
scribed excitation, with known deterministic and probabilistic characteristics. Thus, either an
ARMA or an Autoregressive Exogenous (ARX) model can be fit to describe the aeroelastic
system.

The ARMA method for flutter testing was originally developed for stationary measurements of
a two-mode aeroelastic system. Later publications suggested extended versions of the method
for non-stationary measurements [16], and multiple-mode systems [17], featuring advanced
versions of the flutter stability parameter [18]. In CFD-based aeroelastic applications ARMA
modeling was used to model the unsteady aerodynamic forces , which were then coupled with
the structural dynamic system to predict flutter instability [6, 19]. The current study proposes
a CFD-based flutter prediction approach that is based on ARMA modeling of the aeroelastic
system, and the use of a linear stability parameter to predict the instability onset conditions.

The current paper presents the principals of ARMA/ARX system modeling, and the signal used
for excitation. Several test cases demonstrate the application of the methodology for systems
of various complexity, and at different flow conditions. Other than computational efficiency,
another advantage of the proposed method is that it predicts the instability onset from sub-
critical data, much like is done in flutter testing. Therefore it can be used in support of flutter
flight tests, or even replacing some test points.

2 MATHEMATICAL MODEL

2.1 Dynamic Aeroelastic Model

Aeroelastic simulations are performed within the Elastic Zonal Navier-Stokes Solver (EZNSS)
code. EZNSS is a second-order accurate dual time-stepping, implicit finite-difference code,

2



IFASD-2017-7

which is capable of analyzing the static and dynamic flow fields over a maneuvering elastic ve-
hicle. The governing flow equations, turbulence models, and numerical methods are described
in reference 20.

For the aeroelastic simulation, EZNSS solves the static or dynamic aeroelastic equation of mo-
tion (EOM) in modal coordinates:

[GM ]{ξ̈}+ [GC]{ξ̇}+ [GK]{ξ} = {GFA(t)} (1)

where {ξ} is the vector of modal displacements, [GM ], [GC], and [GK] are the generalized
mass, damping, and stiffness matrices, respectively, and {GFA(t)} is the generalized aerody-
namic force vector. The latter is calculated as:

{GFA(t)} = [ΦA]{FA(t)} (2)

where {FA(t)} is the vector of aerodynamic forces provided at the computational surface mesh,
and [ΦA] is the modal matrix, in which each column holds a structural elastic mode, mapped to
the computational surface mesh. The generalized mass and stiffness matrices, and the modes
matrix, are generated by a finite-element code and provided as inputs to the aeroelastic simula-
tion. In the dynamic aeroelastic case, the aeroelastic EOM is solved for the generalized displace-
ments following each CFD iteration. The time marching scheme for the dynamic aeroelastic
EOM is provided in reference 20.

2.2 Dynamical System Representation in Discrete Time

Considering a viscously damped, linear, dynamic system of N degrees of freedom (DOF), the
system oscillatory motion in the continuous time-domain is given by:

Y (t) =
N∑
n=1

[Âne
snt + B̂ne

snt] (3)

sn = (−ζn + i
√

1− ζ2
n)ωn (4)

where s is the complex Laplace parameter, s is the complex conjugate of s, Ân, B̂n are constants
and ζn, ωn are the system’s n-th modal damping ratio and frequency parameters, respectively.
For ζn � 1, the system modal parameters can be extracted directly from s by:

s = (−ζn + i)ωn (5)

ωn = Im(sn); ζn = −Re(sn)

Im(sn)
(6)

Assuming that the system response Y(t) is sampled at a constant interval ∆t, yi = Y (i∆t) is
the response time series value at sample i with i = 1..K. The z complex frequency domain
is commonly known as the discrete equivalent of the laplace domain. The z-transform [21] is
defined by:

Ỹ (z) =
∞∑
n=0

ynz
−n z = es∆t (7)
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Substituting equation 5 into 7, we obtain the z-plane roots as functions of the modal parameters:

zn = esn∆t = e−ωnζn∆t[cos(ωn∆t) + i sin(ωn∆t)] (8)

|zn| = e−ωnζn∆t ∠zn = ωn∆t (9)

Alternatively, the modal parameters may be expressed as a function of the z-plane roots by:

ωn =
| ln zn|

∆t
ζn = − ln |zn|

| ln zn|
(10)

2.3 ARMA/ARX Model

For modeling purposes, the aeroelastic system is that of equations 1 and 2, including the flow
parameters (Mach, dynamic pressure, angle of attack, etc.), and selection of CFD numerical
parameters (mesh, turbulence model, scheme, time step, etc.). Figure 1 shows the aeroelastic
system with the input of atmospheric turbulence (vertical gust velocities) and output of modal
displacements.

Figure 1: Aeroelastic System

The ARMA model relates the modal displacements to the atmospheric turbulence excitation at
the current and previous time steps and to previous time-step values of the modal displacements.
Assuming any random excitation, the ARMA(p,q) model of the aeroelastic system is given by:

yi + φ1yi−1 + φ2yi−2 + . . .+ φpyi−p = εi + θ1εi−1 + θ2εi−2 + . . .+ θqεi−q (11)

where p,q and φi, θi are the Autoregressive (AR) and Moving-average (MA) model orders and
constants, respectively. εi is a time series that represents the normally distributed, white-noise,
random sequence with zero mean and an unknown variance of σ2. In summation notation,
equation 11 may be rewritten as:

p∑
n=0

φnyi−n =

q∑
m=0

θmεi−m (12)

θ0 = φ0 = 1

The AR model order p is directly associated with the system order in the Laplace domain, thus
for a system with N DOF, the AR order is taken as p = 2N . In order to represent aerodynamic
lags, various AR orders, of p > 2N , are tested as well. The MA order q is typically taken as
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q = p − 1, however the effect of MA order on the model accuracy is studied by using various
MA orders of q > p − 1. The optimal combination of ARMA orders, p,q, can be chosen by
using Akaike’s information criterion (AIC). The combination of p and q which minimized the
AIC are the most desirable.

AIC = −2log[L̂] + 2(p+ q + 1) (13)

Where L̂ is the maximum likelihood function of the ARMA model.

Applying the z-transform to equation 12, we obtain:
p∑

n=0

φnz
−n

∞∑
n=0

ynz
−n =

q∑
m=0

θmz
−m

∞∑
m=0

εmz
−m (14)

using equations 14 and 7, the system transfer function can be written in the z-plane as:

H̃(z) =
Ỹ (z)

Υ̃(z)
=

∑q
m=0 θmz

−m∑p
n=0 φnz

−n (15)

from which the characteristic equation may be identified as:

G(z) = zp
p∑

n=0

φnz
−n = zp + φ1z

p−1 + φ2z
p−2 + . . .+ φp (16)

G(z) = Apz
p + Ap−1z

p−1 + Ap−2z
p−2 + . . .+ A0 (17)

Aj = φp−j

According to Jury’s stability criterion [21], the system is stable if and only if all roots of equa-
tion 16 are inside the unit circle, or, alternatively, if the following conditions are satisfied:

G(1) = Ap + Ap−1 + . . .+ A1 + A0 > 0 (18)
G(−1) = Ap − Ap−1 + . . .− A1 + A0 > 0 (19)

F+(k) = det(X̂k + Ŷk) > 0 (k = 1, 3, ..., p− 1) (20)

F−(k) = det(X̂k − Ŷk) > 0 (k = 1, 3, ..., p− 1) (21)

X̂k =

Ap . . . Ap−k+1

0
. . . ...

0 0 Ap

 Ŷk =

Ak−1 . . . A0
... . . . 0
A0 0 0

 (22)

Of these criteria, the F−(p − 1) parameter is found to be the most critical, since it becomes
negative as any of the system’s roots crosses the unit circle, as derived in Ref. 22:

F−(p− 1) = Ap−1
p

∏
i<j

(1− zizj) (23)

where zi, zj are the two system’s roots. Torii and Matsuzaki [18] have suggested the following
stability parameter formulation for a 2-DOF aeroelastic systems (binary flutter mechanism):

FZ =
F−(p− 1)

F−(1)2
=

F−(p− 1)

(Ap − A0)2
(24)

This parameter was shown to vary as a linear function of the dynamic pressure, thus offering a
convenient indication of the instability onset. While it was demonstrated for 2-DOF aeroelastic
system, this formulation fits for higher degrees of freedom as well, by choosing the desired AR
order.
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2.3.1 ARX/ARMAX Models

Similarly to the ARMA model development, a more general model that depends on an exoge-
nous known signal source may be identified as the following ARMAX(p, q,m) model:

yi + φ1yi−1 + . . .+ φpyi−p = εi + θ1εi−1 + . . .+ θqεi−q + η1ui + η2ui−1 + . . .+ ηm+1ui−m
(25)

where ui is the exogenous signal and ηi are its corresponding coefficients. Removing the MA
part from ARMAX results in the following ARX(p,m) model:

yi + φ1yi−1 + . . .+ φpyi−p = η1ui + η2ui−1 + . . .+ ηm+1ui−m (26)

In the simulation environment the excitation signal is known, thus an ARX (rather than an
ARMA) model can be identified, and should provide a more accurate model of the system. The
advantage of ARMA model is that it follows flutter flight test procedures, and thus can be used
in support of such tests. For both ARMAX and ARX models, eqs. 16 to 24 still hold, as the
characteristic equation depends solely on the AR coefficients. In the current study, the ARX
model coefficients, φi, ηi, are computed using the MATLAB System Identification Toolbox
ARX function.

2.4 Excitation Signal

System identification is based on modal responses to time-varying vertical (heave) velocities.
The gust velocity is a filtered random time series with Gaussian distribution, in which filtering is
applied to control the range of excited frequencies, such that any frequency spectrum of interest
can be excited. The excitation is introduced to the flow field by prescribing a vertical velocity to
all the grid points, as described in reference 23. For three-dimensional aircraft cases the vertical
velocity is assumed constant along the span.

3 TEST CASES

3.1 2D Wing Section - NACA0012

The first test case is that of a spring-suspended NACA 0012 airfoil section, at incompressible
flow. It is the same test case used by Matsuzaki and Torii [24], and serves for method validation.
Figure 2 shows the aeroelastic model. Model parameters are half-chord, b = 0.5, elastic axis
at a = −0.4, static unbalance, xα = 0.4, radius of gyration, rα = 0.5, mass ratio, µ = 40,
and uncoupled frequencies, ωh = 50 rad/s, and ωα = 100 rad/s. These translate to coupled
frequencies of ω1 = 49 rad/s (f1 = 7.7 Hz), and ω2 = 112 rad/s (f2 = 17.7 Hz). Figure 3
shows an ω-V-g plot computed using linear Theodorsen aerodynamics. Flutter onset is at Vf =
145m/s, and dynamic pressure of Qf = 12878Pa. These values serve as initial guess of the
flutter point.

ARMA models of the aeroelastic system were identified at four dynamic pressure values, rang-
ing from 0.67 to 0.97 of Qf , the initial guess of the flutter onset. At each dynamic pressure, an
ARX model was identified based on simulated responses of the two modal DOFs to an excita-
tion signal. Responses were simulated by time-marching the aeroelastic EOM (Eq. 1), at Mach
number of 0.35, and varying altitudes.
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The excitation signal is time-varying, randomly distributed vertical velocity, filtered above
120/Hz. The max amplitude, wg, was set to equivalent angle of attack of 1◦ (wg/V∞ = 1◦). In
general, the amplitude of the excitation signal should be large enough to excite the system, and
provide good data coherence for system identification, but it should not be too large to trigger
nonlinear responses. The amplitude of the excitation signal is also directly linked to the simu-
lation run time, since large excitations require a larger number of sub-iterations between each
two consecutive time steps for the flow field to converge properly.

Aeroelastic responses were simulated based on the inviscid, Euler equations. The computational
mesh is of C-O, type with dimensions of 301x145 in the chordwise, and perpendicular direc-
tions, respectively. The time-step of the simulation was set to dt = 10−3 s, and the simulation
was preformed over N = 50000 time steps.

When generating identification data from CFD simulations, the sampling rate equals the recip-
rocal of the simulation time step, fs = 1/dt, from which signals of frequencies up to half the
sampling rate can be reconstructed (denoted by the Nyquist frequency, fNyq). Because typical
CFD time steps are small, due to scheme convergence limitations, fNyq is typically high, and
exceeds the frequency range of interest for aeroelastic problems. The simulation length, that
is, the number of time steps simulated N , determines the frequency resolution, fNyq/N , which
should be adequate for representing the lowest frequency of interest in the aeroelastic system.
Therefore, the simulation time step and length should be adjusted to fit the desired frequency
range and resolution. In the current test case fNyq = 500Hz, and the frequency resolution is
0.01 Hz.

Figure 4 shows the Power Spectral Density (PSD) function of the first and second mode re-
sponses, ξ1, and ξ2, computed at two dynamic pressure values of 0.67Qf and 0.97Qf . PSDs
were computed using Welch’s averaged modified periodogram method, with eight windows,
and 50% overlap. At both dynamic pressure values the modal responses capture the system’s
aeroelastic frequencies.

Figure 2: Aeroelastic Model of NACA0012 wing section
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Figure 3: Linear Flutter Analysis of NACA0012 wing section
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Figure 4: PSD of the modal responses at 0.67Qf ,and 0.97Qf , NACA0012 wing section
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ARX models of the aeroelastic system were identified based on the ξ1 simulated response, at
dynamic pressure values of 0.67Qf , 0.9Qf , 0.95Qf and 0.97Qf . Since this model has only two
degrees of freedom, the AR order was set to p = 4 (two modes and their conjugates), and the
MA order was set to q = 5.

Figure 5 shows the roots of the characteristic equation of the identified aeroelastic system, over
the unit circle. The unstable modes shift towards the edge of the unit circle as the dynamic
pressure approaches that of flutter. Figure 6 shows the aeroelastic frequencies and damping
coefficients, calculated from the ARX models’ roots (Eq. 10).
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0.95Qf
0.97Qf

Figure 5: Roots of ARX models, p=4, q=5, NACA0012 wing section

Figure 7 shows the stability parameter values, calculated based on the identified ARX mod-
els (Eq. 24). A linear trend line based on stability parameter values at dynamic pressures of
0.9 − 0.97Qf predicts the flutter point at 1.026Qf , while a trend line based on the two higher
dynamic pressures values only (0.95Qf and 0.97Qf ) predicts flutter at 1.038Qf . The stability
parameter at 0.67Qf does not follow these linear trends, indicating that flutter prediction should
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Figure 6: Modal frequencies and Damping of ARX models, p=4, q=5, NACA0012 wing section
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Figure 7: Stability Parameter of NACA0012 wing section

be performed based on data at dynamic pressure values that are close to the flutter point.

Figure 8 shows the sensitivity of the stability parameter to the sample data size. Stability pa-
rameter values converge for N = 5000 and above, indicating that, at least for this test case, the
method only requires simulations as short as 5000 time steps at each dynamic pressure in order
to provide a good prediction of the flutter onset.

The flutter prediction process is wrapped-up by running an aeroelastic simulation at the pre-
dicted flutter dynamic pressure. At dynamic pressure of 1.038Qf the system is exactly on the
verge of instability (Figure 9(a)), while at 1.026Qf the responses are decaying (Figure 9(b)).
The small discrepancy (1.17%) in the predicted flutter point based on the three-point linear
trend is not surprising, considering the fact that this is a case of hard flutter, in which very small
changes in the dynamic pressure are associated with large differences in the system’s stability.
In such cases an exact flutter point can be obtained only when based on responses very close to
flutter.

3.2 Benchmark Super Critical Wing (BSCW) Configuration

The BSCW is a rigid, semispan, rectangular wing, with a chord of 0.4064 m (16 inches), a span
of 0.8128 m (32 inches), and a SC(2)0414 supersonic airfoil. The BSCW configuration was
tested for flutter in the NASA Langley Transonic Dynamics Tunnel, where the rigid wing was
suspended from a pitch and plunge apparatus, simulating two degrees-of-freedom flutter. [25]
Table 1 presents the frequencies, stiffness, and inertia properties of the model.

Frequency (Hz) Generalized Stiffness (Nm) Generalized Mass (kgm2)
Plunge 3.3 437.7 1.0
Pitch 5.2 1067.3 1.0

Table 1: BSCW structural modal properties
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Figure 9: Modal responses at the predicted flutter point (a) and at a lower dynamic pressure (b), NACA0012 wing
section
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Figure 10: Linear flutter analysis of the BSCW, Mach 0.74

The wing was tested for flutter in air and in R-12 gas, at various flow conditions. The BSCW
configuration was recently used for the Aeroelastic Prediction Workshop. [26] Reference data
included experimental results in R-12 gas, at Mach 0.74, 0◦angle of attack. At these conditions
flutter was encountered at dynamic pressure of 8092 Pa, at a frequency of 4.3 Hz.

Figure 10 shows ω − V − g plot computed for this case with a linear panel model, using the
ZAERO software 1. The computed flutter speed is 111m/s, corresponding to dynamic pressure
of Qf = 7476 Pa, and the flutter frequency is 4.3 Hz. The linear solution serves as an initial
guess of the flutter point.

CFD simulations were computed on a C-O type mesh with dimensions of 253x71x99 in the
chordwise, spanwise, and perpendicular directions, respectively. All simulations are based on
the viscous Navier-Stokes equations, using the Spalart-Allmaras turbulence model. Details of
the computational parameters can be found in Raveh et al. [20]. Aeroelastic simulation at the
wind-tunnel test flutter dynamic pressure of 8092 Pa yielded slightly diverging responses, at a
frequency of 4.4 Hz. The exact flutter point was not pinpointed in the aeroelastic simulation,
hence there is no exact reference for the flutter dynamic pressure.

An ARX model was identified at four dynamic pressure values, ranging from 0.8 to 1.03 Qf .
At each dynamic pressure, an ARX model was identified based on simulated responses of the
plunge DOF to an excitation signal of vertical velocity, with equivalent amplitude of 4◦ angle
of attack. To ensure sufficient observability in the estimation process, the excitation signal
was filtered above 30 Hz. The CFD simulation time step was dt = 10−3 s, for which the
frequencies up to fNyq = 500Hz can be identified. The simulations were performed over 4000-
5000 time steps (frequency resolution of 0.125 and 0.1 Hz, respectively), which are required for
sufficiently converged estimation of the stability parameter.

The AR order of the ARX model used was p = 6 - four roots for the number of modes (and
their conjugates), and two for aerodynamic legs, which were required in this case. An AR order
of p = 4 resulted in two complex and two real roots, thus indicating that a higher order model is
required. MA orders of q = 7 to q = 11 yielded best flutter prediction results (when compared
to the wind tunnel dynamic pressure), while the Fz parameter estimation only converged at high
MA orders of q = 25 and above. Figures 11 shows the estimation sensitivity to the MA order.

1www.zonatech.com/ZAERO.htm
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Figure 11: Stability parameter sensitivity to the MA order, BSCW
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As can be seen, this case requires more input history information (higher order of MA) in order
to obtain well-converged stability parameter estimation.

Figure 12 shows the roots of the characteristic equation for each ARX model, over the unit
circle. The roots are seen to shift towards the edge of the unit circle with increasing dynamic
pressure. As expected, there are two complex roots for the aeroelastic modes, and two real roots
for the aerodynamic legs. Figure 13 shows stability parameter estimation for MA order of 25,
based on data set ofN = 4000 points. A linear trend line predicts flutter at 1.065Qf = 7962 Pa.
This value is 0.98 of the wind tunnel flutter dynamic pressure. It was not yet verified by a full
aeroelastic CFD simulation.

3.3 Generic Transport Aircraft

The third test case involves a generic transport aircraft shown in figure 14. The geometrical
properties of the model are described in reference 27. Figure 15 shows the modes that were
included in the flutter analysis, with their frequencies.
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Figure 13: Stability parameter of the BSCW, p = 6, q = 25

(a) geometry and mesh

(b) finite-element model

Figure 14: Generic Transport Aircraft model
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(a) 3.5 Hz (b) 10.8 Hz

(c) 11.9 Hz (d) 16.0 Hz

(e) 18.1 Hz (f) 21.1 Hz

(g) 22.5 Hz (h) 29.9 Hz

Figure 15: Modes of the Generic Transport Aircraft

15



IFASD-2017-7

V [m/s]
0 50 100 150 200 250 300

f [
H

z]

0

5

10

15

20

25

mode 1
mode 2
mode 4
mode 5
mode 6
mode 7

(a) Frequency vs. Velocity

V [m/s]
0 50 100 150 200 250 300

da
m

pi
ng

 [%
]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

mode 1
mode 2
mode 4
mode 5
mode 6
mode 7

(b) Damping vs. Velocity

Figure 16: Linear flutter analysis, Mach=0.53, Generic Transport Aircraft

Flutter was computed at the subsonic regime, Mach 0.53, with three rigid body modes and
eight elastic modes. Similarly to other two cases, linear flutter analysis, using ZAERO, was
performed in order to assess the flutter velocity and mechanism. ω − V − g plot (Figure 16)
shows flutter of the second elastic mode, at velocity of 179 m/sec, and frequency of 10 Hz.
Participating modes are mode 1 (first wing bending), 2 (second wing bending), and 7 (wing
torsion). Fore-aft modes were excluded from the analysis. This analysis provides the initial
guess of the flutter dynamic pressure at Qf = 15485 Pa.

Considering that three modes are participating in the flutter, a minimum order of p = 6 is
required for the AR part of the ARX estimation process. Allowing for aerodynamic lags, an AR
order of p = 8 was used. The MA portion of the model was set to q = 9. Higher orders of the
MA part did not improve the estimation results.

ARX models were estimated for the aeroelastic system in three dynamic pressure values of
0.81Qf , 0.87f and 0.91Qf . The excitation signal was a randomly distributed vertical velocity,
filtered above 120 Hz, with an amplitude of 3◦ angle of attack. The simulation time step was
dt = 10−4 s (fNyq = 5000). Since this case involves modes of higher frequency (the frequency
of the torsion mode, involved in the flutter mechanism, is 22.5 Hz), this small time step was
required in order to have sufficient time steps within a cycle (about 450 for the torsion mode).
Responses were computed over N = 10000 time steps, resulting in frequency resolution of 0.5
Hz.

Figure 17 shows the roots of the characteristic equation over the unit circle of the identified
system. There are three complex roots for the three participating modes (two shown in the
zoom insert, one of which is very close to the real axis), and two real roots for the aerodynamic
legs.

Figure 18 shows the stability parameter estimation. A linear trend line predicts flutter at 1.033Qf .
This was verified in a full aeroelastic simulation, as shown in Figure 19.

4 SUMMARY

The paper presented a computational methodology for CFD-based flutter analysis that is based
on system identification of the aeroelastic system at few sub-critical dynamic pressures, and
computation of a linear stability parameter that, by extrapolation, points to the flutter conditions.
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Figure 17: Roots of ARX model, p = 8, q = 9, Generic Transport Aircraft
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Figure 18: Stability parameter of the Generic Transport Aircraft, p = 8, q = 9
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Figure 19: Time response of second mode at flutter (1.04Qf ), Mach=0.53, Generic Transport Aircraft

The method was demonstrated on three test cases of subsonic airfoil flutter (2 DOF plunge
and pitch aeroelastic system), transonic airfoil flutter (2 DOF plunge and pitch aeroelastic sys-
tem), and a generic transport aircraft at subsonic flow, with flutter mechanism involving three
structural modes. In all cases the method resulted in accurate predication of the flutter point as
compared to either full CFD aeroelastic simulation, or wind tunnel test results.

The method is based on simulated CFD responses to prescribed excitations, at few dynamic
pressure values that are selected based on an initial guess of the flutter point, obtained from
linear analysis. Responses need to be computed at two to three dynamic pressure values to
generate a linear trend line of the stability parameter. At each dynamic pressure value only a
single aeroelastic simulation needs to be performed, for a few thousand time steps (depending
on the problem parameters). Compared to a full aeroelastic simulation that only predicts the
system’s stability at a single dynamic pressure value, or to methods that involve reduced-order
modeling of the unsteady aerodynamic forces, and require several simulations of responses to
modal excitation of each mode, the current method is highly computationally efficient.

The shortcomings of the method are that the order of the ARX model, and required length of
training data, cannot be a-priori determined, and require some experimenting with. While the
AR order is proportional to the number of modes participating in flutter problem, the MA order
needs to be tuned for convergence of the stability parameter estimation results. Since flutter
prediction is more accurate when based on stability parameter values computed close to the
flutter point, some cases might require additional simulations, for generating extra data sets, in
cases in which the initial guess of the flutter point is far from the real flutter point.
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