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Abstract: Random loads are of greatest concern during the design phase of new aircraft. They
can either result from a stationary Gaussian process, such as continuous turbulence, or from a
random process, such as buffet. Buffet phenomena are especially relevant for fighters flying in
the transonic regime at high angles of attack or when the turbulent, separated air flow induces
fluctuating pressures on structures like wing surfaces, horizontal tail planes, vertical tail planes,
airbrakes, flaps or landing gear doors.
In this paper a method is presented for predicting n-dimensional combined loads in the presence
of massively separated flows. This method can be used both early in the design process, when
only numerical data are available, and later, when test data measurements have been performed.
Moreover, the two-dimensional load envelope for combined load cases and its discretization,
which are well documented in the literature, are generalized to n dimensions, n ≥ 3.

1 INTRODUCTION

The main objectives of this paper are:

1. To derive a method for predicting multivariate loads (but also displacements, velocities
and accelerations in terms of auto- and cross-power spectra, [1, pp. 319-320]) for aircraft,
or parts of them, subjected to a random excitation.

2. To investigate the geometrical shape of the load envelope and to discretize it in order to
obtain a finite number of design load cases. The load envelope shall be considered as
n-dimensional.

The aforementioned method is derived for wide-sense stationary stochastic processes (see [1,
pp. 297-298]). The starting point is the availability of the unsteady, motion-independent pres-
sure distribution on a three-dimensional aerodynamic grid (either from CFD or from test mea-
surements, obtained in flight or in wind tunnel) and a structural model, usually an FEM stat-
ically condensed with a Guyan reduction (see [2]) to which the masses are added separately.
Depending on the nature of the problem, the self-induced aerodynamic forces could also have
an important impact on the structural response and they are, therefore, to be included in the
formulation. An industry standard within the field of the linear methods for the determination
of the generalized aerodynamic forces is the doublet-lattice method (see [3]).
The aerodynamic pressure distribution is integrated obtaining a force distribution statically
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equivalent on the same grid (section 2). Surface splines are then used in order to interpolate
the force distribution, obtaining an equivalent system on the structural grid (section 3). The
aeroelastic response of the structure to the unsteady flow excitation (namely buffeting) is com-
puted in modal space using a stochastic approach (section 4).
With the obtained results, it is possible to define an n-dimensional load envelope. It contains
equally probable combinations of loads between their minimum and maximum values. Al-
though the load envelope is n-dimensional (because it generally represents combinations of at
most three forces and three moments at multiple monitoring stations), only the two- and three-
dimensional cases have been studied thoroughly in the literature (cf. [4–6]). Furthermore, to
the best of the authors’ knowledge, a general method for discretizing the n-dimensional loads
envelope for n ≥ 3 is missing. Therefore, after determining the geometrical shape of the load
envelope for Gaussian distributed combined loads (an ellipse for n = 2, an ellipsoid for n = 3
and an n-dimensional ellipsoid for n ≥ 4), a new method for discretizing the load envelope is
introduced. The specific cases for two and three dimensions are first presented, and then the
general n-dimensional case valid for all n ≥ 2 is derived (section 5). This method consists
in circumscribing the ellipsoid with a convex polytope, obtained by a transformation of the
n-dimensional generalization of one of the 13 Archimedean solids, the small rhombicubocta-
hedron. The vertices of this polytope provide a finite number of design load cases and they can
generally be applied for every problem where the external random excitation induces multivari-
ate random loads; example of such problems are buffeting or continuous turbulence response.

2 THE EXTERNAL AERODYNAMIC EXCITATION

Let the unsteady, motion-independent pressure distribution be available on a three-dimensional
grid from CFD or test measurements. Aim of this section is to show how to integrate the
pressure distribution obtaining a force distribution statically equivalent on the same mesh. If the
force distribution is already available, it is possible to proceed directly with the interpolation of
the aerodynamic forces over the structural mesh, as explained in section 3.
Let us consider an unstructured or regular mesh, where the generic r-th cell has c vertices, with
c = 3 for unstructured meshes and c = 4 for structured ones.
It is possible to integrate the pressure distribution over the r-th cell as

Fzr =
∫∫

pr(x, y) dxdy

Mxr =
∫∫

(y − yrref )pr(x, y) dxdy

Myr = −
∫∫

(x− xrref )pr(x, y) dxdy

(1)

where pr(x, y) is the pressure distribution over the r-th cell, (y − yrref ) and (x − xrref ) are
the lever arms from the arbitrary reference point (xrref , yrref ), Fzr is the resulting normal force
along the local zr-axis, Mxr and Myr are the resulting moments about the local xr- and yr-axes.
This methodology can be followed indistinctly in time or frequency domain and therefore the
integration will be performed for each time or frequency step.
The resulting normal force and moments can be calculated also from the nodal forces as

Fzr =
c∑
i=1

fzri

Mxr =
c∑
i=1

(yri − yrref )fzri

Myr = −
c∑
i=1

(xri − xrref )fzri

(2)
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where fzri are the normal forces at each i-th vertex of the cell and (yri − yrref ) and (xri −xrref )
are their lever arms from the arbitrary reference point (xrref , yrref ). The systems in Eqs. (1) and
(2) must be equal in order to obtain two distributions that are statically equivalent. Therefore,
chosen a numerical method for integrating Eqs. (1) and expressing them in matrix form, we
obtain

C2rpr =
[
Fzr ,Mxr ,Myr

]ᵀ
= C1rfzr (3)

where fzr = [fzr1 , . . . , fzrc ]ᵀ and pr = [pr1 , . . . , prc ]
ᵀ are the nodal normal forces and the nodal

pressures at the c vertices of the r-th cell, respectively.
Finally, fzr can be explicitly calculated as

fzr = C+
1rC2rpr = Arpr (4)

where Ar = C+
1rC2r and C+

1r is the Moore-Penrose pseudoinverse of C1r (cf. [7, pp. 44-59]).
C1r and C2r are 3 × c matrices and of full rank if the mesh is unstructured (with triangular
cells), otherwise rectangular with more columns than rows. Therefore, Ar is a c× c matrix.
Let us denotate with nr = [nrX , nrY , nrZ ]ᵀ the normal versor of the r-th cell, where nrX , nrY
and nrZ are its three components in the global reference system. It is possible to project the
matrix Ar over the normal versor on all the vertices, such as

Anr = diag(nr, . . . ,nr)Ar (5)

where diag(nr, . . . ,nr) is a 3c× c matrix.
The element matrices Anr can be merged by expanding each matrix in conformity with the
global size of the aerodynamic mesh, obtaining Ae

nr
, and by adding them together as

An =
R∑
r=1

Ae
nr

(6)

Let us denotate with pk the pressure distribution on the overall aerodynamic grid. It is now
possible to compute the force distribution fk on the same grid as

fk = Anpk (7)

If Spk(jω) is the spectrum of pk, then the spectrum of fk is given by (cf. [1, pp. 324 and 329])

Sfk(jω) = AnSpk(jω)Aᵀ
n (8)

3 INTERCONNECTION OF STRUCTURE AND AERODYNAMICS

Once the force distribution over the aerodynamic mesh is available, it is necessary to project it
on the structural mesh, since they generally do not coincide. There are several methods available
in the literature for interpolating functions of two or three variables. One option is to use the
surface splines based upon the small deflection equation of a plate (see [8–10] for the infinite
plate spline method and [11, pp. 85-100] for the thin-plate spline method). This transformation
satisfies the structural equivalence, i.e. the two force systems on the aerodynamic and on the
structural grids will produce the same structural deflections. The splining method leads to the
transformation matrix Gkg, such as

uk = Gkgug (9)
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where uk are the deflections of the aerodynamic grid and ug are the deflections of the structural
grid. Since the forces on the aerodynamic grid fk and on the structural grid fg produce the same
virtual work, we obtain

fg = Gᵀ
kgfk (10)

fk is expressed by the Eq. (7) in the form [fkX1
, fkY 1

, fkZ1
, . . . , fkXN

, fkY N
, fkZN

]ᵀ and, for
consistency, we rewrite Eq. (10) as

fg = (Gᵀ
kg ⊗ I3)fk (11)

where ⊗ is the Kronecker product and I3 is the 3× 3 identity matrix (cf. [7, pp. 22-24]).
At this point it is possible to interpolate the spectra of the aerodynamic forces on the structural
grid as

Sfg(jω) = (Gᵀ
kg ⊗ I3)Sfk(jω)(Gᵀ

kg ⊗ I3)
ᵀ (12)

Sfg(jω) is generally for each ω a full matrix. A reduction of the problem size can be obtained
when a low correlation of the aerodynamic forces is identified among different parts of the struc-
ture. In this case, it can be convenient to divide the structure in correlated parts and perform the
explained procedure on those parts independently. The overall spectrum Sfg(jω) will then be
the direct sum (cf. [7, pp. 21-22]) of the spectra of the J correlated parts, S(1)

fg
(jω), . . . ,S

(J)
fg

(jω),
i.e. it is a block diagonal square matrix

Sfg(jω) = S
(1)
fg

(jω)⊕ . . .⊕ S
(J)
fg

(jω) = diag(S
(1)
fg

(jω), . . . ,S
(J)
fg

(jω)) (13)

4 BUFFETING IN MODAL SPACE

The word buffeting refers to the aeroelastic response of the structure to an unsteady flow exci-
tation.
Let us consider the spectrum Sfg(jω) of the aerodynamic force distribution on the structural
mesh. It is convenient to consider only the fluctuating part of the signals, by removing their
steady parts. Mean or steady-state loads are not treated in this paper and they can be added
separately to the fluctuating components.
Let us consider the transfer function of the aeroelastic system described in modal space as
(cf. [12, p. 71])

H(jω) = [−ω2M̃ + jωB̃ + (1 + jg)K̃− q∞Q̃(Ma, k)]−1 (14)

By using the (real) modal matrix Φ, the spectrum of the modal amplitudes is given by

Sξ(jω) = H(jω)ΦᵀSfg(jω)ΦH(jω)† (15)

and the spectra of the modal velocities and modal accelerations can be derived from Sξ(jω) as

Sξ̇(jω) = ω2Sξ(jω) (16)

Sξ̈(jω) = ω2Sξ̇(jω) = ω4Sξ(jω) (17)

The spectra of the displacements, velocities and accelerations in the physical space are

Su(jω) = ΦSξ(jω)Φᵀ (18)

Su̇(jω) = ΦSξ̇(jω)Φᵀ = ω2Su(jω) (19)
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Sü(jω) = ΦSξ̈(jω)Φᵀ = ω4Su(jω) (20)

Similar approaches to the multi-mode buffeting analysis are followed by several authors of
different engineering branches, both using measured and analytic pressure spectra (cf. [13–15]).
In order to recover the nodal loads, the mode displacement method can be employed as (cf. [16,
pp. 641-650])

SY (jω) = KSu(jω)Kᵀ (21)

The spectrum of the integrated loads is finally obtained by summing up the nodal loads at
specific monitoring stations. It can be done by using a transformation matrix T which rotates
the nodal loads in the local coordinate system proper to each monitoring station and integrates
the nodal loads

SYMS
(jω) = TSY (jω)Tᵀ (22)

The computation of spectra for all the DOFs of the system and for all the frequency steps can
result to be a heavy task. When such information is needed only at specific DOFs, one can
consider sub-matrices of the modal and stiffness matrices by cancelling the undesired DOFs
from the rows of both matrices. By entering these sub-matrices in Eqs. (18), (19), (20) and
(21) it is then possible to calculate the auto- and cross-spectra of the displacements, velocities,
accelerations and nodal loads relative only to the selected DOFs. If one is exclusively interested
in specific terms of the spectra (for instance only auto-spectra at specific DOFs), Eq. (18) can
be written as

Sulm(jω) =
n∑
a=1

n∑
b=1

ΦlaSξab(jω)Φᵀ
mb (23)

relative to the DOFs l and m. Velocities, accelerations and loads can be easily derived from Eq.
(23).
Usually we are interested in obtaining integrated load envelopes at specific monitoring stations
of the aircraft. For this task, it is not needed to compute the full spectra in Eqs. (18), (21) and
(22), but only their covariance matrices (cf. [1, pp. 152-154 and 188-191]). From the covariance
matrix of the integrated loads, it is then possible to estimate the maximum and minimum loads
of the multivariate random problem, how they combine each other and how they combine with
other intermediate values (solving what is called the phasing problem, cf. [6, pp. 97-100], i.e.
the problem of defining the simultaneously occurring values of two or more variables).
The covariance matrix of the modal amplitudes is the integral of the spectrum in Eq. (15)
(cf. [1, pp. 327-328])

Cov(ξ) =
1

2π

∫ +∞

−∞
Sξ(jω)dω (24)

The covariance matrices of the physical displacements, nodal loads and integrated loads at
specific monitoring stations are then

Cov(u) = Φ Cov(ξ)Φᵀ (25)

Cov(Y) = K Cov(u)Kᵀ (26)

Cov(YMS) = T Cov(Y)Tᵀ (27)

Denoting with σYMS
the diagonal matrix of the standard deviations of the integrated loads, the

maximum and minimum fluctuating loads are then obtained as±UσσYMS
. Uσ is a factor, which

for buffet problems usually assumes a value of 3 or 3.5 in order that 99.865% or 99.977% of
all possible values in a Gaussian process are respectively covered. Denoting with (YMS)0 the
mean or steady-state components of the integrated loads, the maximum and minimum loads
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are finally the sum of the mean components respectively with the maximum and minimum
fluctuating components {

(YMS)max = (YMS)0 + UσσYMS

(YMS)min = (YMS)0 − UσσYMS

(28)

The correlation matrix of the integrated loads is

Cor(YMS) = σ−1YMS
<(Cov(YMS))σ−1YMS

(29)

and it defines the linear dependency between the load components. The elements on the main
diagonal assume unitary values, since every load is perfectly correlated with itself. The off-
diagonal terms are |ρxy| ≤ 1. When |ρxy| = 1 the two load components x and y are determin-
istically linearly dependent. If ρxy = 0 then x and y are uncorrelated, i.e. statistically linearly
independent.
The information provided by Eqs. (28) and (29) allows to statistically define appropriate com-
binations of the values that the integrated load components can assume between their minimum
and maximum values at the different locations on the aircraft. These load envelopes, as loci
of points with the same probability density, are generally n-dimensional, since they represent
combinations of at most three forces and three moments at multiple monitoring stations (even
if some components are usually neglected depending on the monitoring station considered, thus
simplifying the general problem).

5 DESIGN ENVELOPE FOR COMBINED LOADS AND ITS DISCRETIZATION

In this section we shall investigate the geometrical shape of the design load envelope for n ≥ 2
Gaussian distributed combined loads. We shall show that for n = 2 this envelope is an ellipse,
for n = 3 an ellipsoid and for n ≥ 4 an n-dimensional ellipsoid. Furthermore, we shall an-
alytically determine some interesting points on this envelope, namely the points of tangency
with a bounding n-orthotope (that is a rectangle for n = 2 and a cuboid for n = 3) and an
additional set of equiprobable combined loads given by the intersections of the space diagonals
of the bounding n-orthotope with the envelope. This procedure is recommended in [4, pp. 2-
C-16/2-C-19] for gust loads when n = 2 but, in principle, one can choose any additional set of
points on the envelope, e.g. the vertices of the design envelope.
Finally, the design load envelope will be discretized by a circumscribing convex polytope (a
polygon for n = 2 and a polyhedron for n = 3) by using the above calculated points. The
vertices of this polytope will be considered as the new design points, introducing a small con-
servatism. This is the approach proposed by Hoblit (cf. [6, Chapter 6, pp. 97-114]) for the
two-dimensional case, where all the vertices of the circumscribing octagon lie on the bounding
rectangle of the ellipse. For the three-dimensional case, we introduce a new approach, which
can be easily generalized to the n-dimensional case, n ≥ 2.

5.1 The two-dimensional case, n = 2

When only two load components are important in evaluating the strength of the system, a design
load ellipse can be determined, as locus of points of equal probability density (cf. [5]). The
system must be able to sustain any combination of loads represented by the points on the ellipse.
It is an ellipse since the covariance matrix of the two loads X and Y is positive definite. In
general, it can be proved that the covariance matrix is positive semi-definite, but we assume the
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correlation coefficient ρxy of the two random load components X and Y to be different from
±1. If ρxy = ±1, the two load components are linearly dependent and the ellipse degenerates
into a segment.
The two-dimensional Gaussian probability density function is given by

f(x, y) :=
1

2πσxσy
√

1− ρ2xy
e−

1
2
G2(x,y), −∞ < x, y < +∞ (30)

The quadratic form G2(x, y) is defined as

G2(x, y) :=
1

1− ρ2xy

[(
x− x0
σx

)2

− 2ρxy

(
x− x0
σx

)(
y − y0
σy

)
+

(
y − y0
σy

)2 ]
(31)

or in matrix form as
G2(x, y) := (x− x0)

ᵀC2(x− x0) (32)

where x := [x, y]ᵀ is the position vector of a point on the ellipse, x0 := [x0, y0]
ᵀ is the vector

of the means or steady-state components and C2 is the inverse of the symmetric and positive
definite covariance matrix Σ2 of the load components X and Y , i.e.:

C2 := Σ−12 = diag (1/σx, 1/σy) R−12 diag (1/σx, 1/σy) (33)

Note that σx, σy > 0, −1 < ρxy < 1 and R2 is the correlation matrix of the load components X
and Y .1 By means of the translation x′ := x−x0 (and writing from now on the new coordinates
without primes) the quadratic form G2(x, y) can be written as

G2(x, y) := xᵀC2x (34)

and the origin of the coordinate system is now the centre of the ellipse.
It can be shown that the ellipse of equal probability has the Cartesian equation(

x

σx

)2

− 2ρxy ·
xy

σxσy
+

(
y

σy

)2

= 1 (35)

or in matrix form
Q2(x, y) := xᵀC′2x = 1 (36)

where C′2 := det(R2)C2 and det(R2) > 0. The design load ellipse lies entirely within the
rectangle defined by the lines x = ±xmax and y = ±ymax (see Fig. 1).
In order to determine the points of tangency of the ellipse with the lines x = ±xmax (respec-
tively y = ±ymax), we note that the slope at these points is zero (respectively∞). We obtain
the relations

σx =
√

1− ρ2xy · xmax, σy =
√

1− ρ2xy · ymax (37)

1The standard deviations σx and σy are not the standard deviations given in the main diagonal of σYMS
. In order

to build the design load envelope, it is necessary to have the correlation matrix R2 (given by Eq. (29)) and either
the maximum values xmax and ymax of the fluctuatingX and Y loads or their standard deviations (i.e. σYMS

). We
are interested in keeping the maximum values in the load envelope, which are defined by diag(xmax, ymax) :=
UσσYMS

and diag(−xmax,−ymax) := −UσσYMS
(see Eq. (28)). Consequently one can determine σx and σy

using Eq. (37) and then the load envelope using Eq. (35) or (36). Geometrically, the points with the coordinates
(±σx, 0) are the intercepts of the ellipse with the x-axis and those with coordinates (0,±σy) are the intercepts of
the ellipse with the y-axis (see Fig. 1).
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and the coordinates of the points of tangency I and J are

I(xmax, ρxyymax), J(ρxyxmax, ymax) (38)

Since the ellipse is symmetric with respect to the origin, it follows that the coordinates of I ′ and
J ′ are (−xmax,−ρxyymax) and (−ρxyxmax,−ymax). A practical additional set of design points
can be obtained by intersecting the second (respectively first) diagonal through the origin (0, 0)
and the vertex of the bounding rectangle with coordinates (xmax, −ymax) (respectively (xmax,
ymax)). In this way one obtains the design points having the coordinates (see Fig. 2)

A

(√
1− ρxy

2
· xmax,−

√
1− ρxy

2
· ymax

)
, B

(
−
√

1 + ρxy
2

· xmax,−
√

1 + ρxy
2

· ymax

)
(39)

By the symmetry of the ellipse with respect to the origin (0, 0), the coordinates of A′ and B′ are
(−xA,−yA) and (−xB,−yB).
The following design points are chosen in [4, pp. 2-C-16/2-C-19] (see Fig. 2, blue polygon):

I, B′, J, A′, I ′, B, J ′, A (40)

These points build an irregular octagon circumscribed by the ellipse, i.e. the octagon lies en-
tirely inside the ellipse and only the points (40) are on the ellipse.
A different approach is to consider an irregular octagon circumscribing the ellipse by taking the
intersections of the tangent lines at A,A′, B,B′ with the lines building the bounding rectangle.
In this way one obtains the design points

R, S, T, U,R′, S ′, T ′, U ′ (41)

Figure 1: Design load ellipse with bounding rectangle
and points of tangency (ρxy ≥ 0).

Figure 2: Design load ellipse with inscribed octagon
(blue polygon) and circumscribed octagon
(red polygon) (ρxy ≥ 0).
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also proposed by Hoblit (cf. [6, Chapter 6, p.100]).2 These points build an irregular octagon
circumscribing the ellipse, i.e. the ellipse lies entirely inside the octagon and only the points of
tangency I, J, I ′ and J ′ are on the ellipse (see Fig. 2, red polygon). This choice introduces a
small conservatism that can be calculated locally by means of the criticality of the points (41)
defined as the ratio

cr(P ) :=
|
−→
OP |
|
−−→
OE|

(42)

where P is an arbitrary point and E is the point of intersection with the ellipse of the line
through the origin O and the point P . It is

−−→
OE = t

−→
OP , with t > 0 and, consequently, cr(P ) =

|
−−→
OP |
t|
−−→
OP |

= 1
t
. Inserting the coordinates of E given by xE = txP and yE = tyP into the equation

of the ellipse one can determine the parameter t. Solving the resulting equation with respect to
t it follows

cr(P ) =

√(
xP
σx

)2

− 2ρxy
xPyP
σxσy

+

(
yP
σy

)2

=
√

1− ρ2xy · dM(xP ,0) =
dM(xP ,0)

dM(x,0)
(43)

where dM(xP ,0) :=
√

xᵀ
PC2xP is the Mahalanobis distance between the point P with the po-

sition vector xP and the origin and dM(x,0) :=
√

xᵀC2x is the Mahalanobis distance between
a point on the ellipse with the position vector x and the origin, since C2 = Σ−12 . Note that if
the covariance matrix is the identity matrix, the Mahalanobis distance reduces to the Euclidean
distance.

5.2 The three-dimensional case, n = 3

When three load components are important in evaluating the strength of the system, a design
load ellipsoid can be determined as locus of points of equal probability density. The system
must be able to sustain any combination of loads represented by the points on the ellipsoid. As
in the two-dimensional case, we assume that the correlation coefficients ρxy, ρxz and ρyz are
different from ±1.
The three-dimensional Gaussian probability density function is given by

f(x, y, z) :=

√
det(C3)

(2π)3/2
e−

1
2
G3(x,y,z), −∞ < x, y, z < +∞ (44)

where the quadratic form G3(x, y, z) is defined by

G3(x, y, z) := (x− x0)
ᵀC3(x− x0) (45)

and C3 is the inverse matrix of the symmetric and positive definite covariance matrix Σ3 of the
loads X, Y, Z, i.e.:

C3 := Σ−13 = diag (1/σx, 1/σy, 1/σz) R−13 diag (1/σx, 1/σy, 1/σz) (46)

Moreover, x :=
[
x, y, z

]ᵀ is the position vector of a point of the ellipsoid, x0 :=
[
x0, y0, z0

]ᵀ
is the vector of the means or steady-state components, R3 is the correlation matrix of the loads

2The points have coordinates R
(
xmax,

(√
2(1 + ρxy)− 1

)
ymax

)
, S
((√

2(1 + ρxy)− 1
)
xmax, ymax

)
,

T
((

1−
√
2(1− ρxy)

)
xmax, ymax

)
, U

(
−xmax,

(√
2(1− ρxy)− 1

)
ymax

)
and by the symmetry with re-

spect to the origin one obtains R′, S′, T ′ and U ′.
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X, Y, Z, σx, σy, σz > 0 and −1 < ρxy, ρxz, ρyz < 1. As in the case n = 2, it is convenient to
make the translation x′ := x − x0 in order to have the centre of the ellipsoid at the origin. By
means of this transformation (and writing the new coordinates without primes), the design load
ellipsoid can be expressed by the Cartesian equation

Q3(x, y, z) := xᵀC′3x = 1 (47)

where C′3 := det(R3)C3 and det(R3) > 0. In three-dimensional space the equation (47) repre-
sents in general a quadric surface (in our case an ellipsoid, since the covariance matrix has been
assumed to be positive definite and therefore also the inverse is positive definite) with centre in
the origin (0, 0, 0). It lies entirely within the rectangular parallelepiped (or cuboid) defined by
the planes x = ±xmax, y = ±ymax and z = ±zmax.
In order to determine the points of tangency of the ellipsoid with the circumscribing rectangular
parallelepiped, we could proceed as in the two-dimensional case. However, it is easier (espe-
cially for the multidimensional case n ≥ 3) to proceed in the following way.
Let first calculate the normal vector of the ellipsoid at each point given by n = 1

2
∇Q3 = C′3x.

Let I be the point of tangency of the ellipsoid with the plane x = xmax, J the point of tangency
with the plane y = ymax and K the point of tangency with the plane z = zmax. Then, these
points are given by the equations

C′3xI = µ1e1, C′3xJ = µ2e2, C′3xK = µ3e3 (48)

where xI :=
[
xI , yI , zI

]ᵀ, xJ :=
[
xJ , yJ , zJ

]ᵀ and xK :=
[
xK , yK , zK

]ᵀ are the position vectors
of the points I, J and K, µ1, µ2 and µ3 are real numbers (not needed for our investigation) and
e1, e2, and e3 are the unit vectors in direction of the x-, y- and z-axes. The Eqs. (48) express
that e1 and C′3xI are two normal vectors to the plane x = xmax, e2 and C′3xJ are two normal
vectors to the plane y = ymax and e3 and C′3xK are two normal vectors to the plane z = zmax.
Knowing that the position vector of the point I is xI =

[
xmax, yI , zI

]ᵀ, where yI and zI have to
be determined, one can solve the first vector equation for the unknown µ1, yI and zI obtaining

yI = ρxy
σy
σx
xmax, zI = ρxz

σz
σx
xmax (49)

Exactly in the same way, we compute the coordinates of the point of tangency J with the plane
y = ymax obtaining from the second equation of (48) with yJ = ymax

xJ = ρxy
σx
σy
ymax, zJ = ρyz

σz
σy
ymax (50)

and those of the point of tangency K with the plane z = zmax obtaining from the third equation
of (48) with zK = zmax

xK = ρxz
σx
σz
zmax, yK = ρyz

σy
σz
zmax (51)

The standard deviations σx, σy and σz can be determined by noting that the coordinates of I, J
and K satisfy the equation (47). Thus substituting the coordinates of I, J and K into (47), one
obtains after some lengthy algebraic simplifications the equations

σx =
√

det (R3) · xmax, σy =
√

det (R3) · ymax, σz =
√

det (R3) · zmax (52)

Finally, with these values we obtain from (49), (50) and (51) the coordinates of I, J and K:

I(xmax, ρxyymax, ρxzzmax), J(ρxyxmax, ymax, ρyzzmax), K(ρxzxmax, ρyzymax, zmax) (53)

10
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As in the two-dimensional case, the points of tangency I ′ (with the plane x = −xmax), J ′ (with
the plane y = −ymax) andK ′ (with the plane z = −zmax) are obtained by the half-turn x′ = −x
since the ellipsoid is symmetric with respect to the origin (0, 0, 0).
As in the case n = 2, a set of additional points (in total 6 points for n = 3) could be either
the intersections of the space diagonals of the cuboid with the ellipsoid or the vertices of the
ellipsoid defined by the correlation matrix R3. The determination of these points for both
choices is exactly the same as in the two-dimensional case and, therefore, we can omit the
details.
In order to derive a convex polyhedron circumscribing the ellipsoid, one could proceed as in
the two-dimensional case by calculating the intersections of the tangent planes at the additional
points with the planes of the bounding cuboid. However, the natural generalization of the two-
dimensional case has some weaknesses. First, the number of vertices tends to be very large
(e.g. 8 for n = 2, 24 for n = 3, . . . , 432 for n = 6 and so on), giving too many design points.
Secondly, for n ≥ 2, n − 1 of the n coordinates are given by the maximum values, which
can be too distant from the design envelope (indeed, in the two-dimensional projections of the
ellipsoid all vertices lie on the bounding rectangle of the ellipse). Thirdly, each vertex has a
different criticality, introducing different levels of conservatism with respect to the actual loads.
For all these reasons, this approach cannot be used for n ≥ 3.

5.2.1 A new approach for the circumscribing polyhedron

A better approach consists in transforming the ellipsoid to a unit sphere, then in finding a poly-
hedron, possibly regular, that circumscribes it and, finally, in transforming back both the unit
sphere and the polyhedron.
Let uᵀu = 1 be the Cartesian equation of the unit sphere, where u := [u1, u2, u3]

ᵀ is the posi-
tion vector of a point of the unit sphere. Let Φ be the 3× 3 orthogonal matrix consisting of the
eigenvectors of C′3 and Λ3 := diag(λ1, λ2, λ3) be the diagonal matrix of the eigenvalues of C′3.
Then C′3 = ΦΛ3Φ

ᵀ and the transformation

x = ΦΛ
− 1

2
3 u (54)

leads the unit sphere to the ellipsoid of equal probability density. Indeed, from (54) it follows
u = Λ

1
2
3 Φᵀx and, inserting this expression into the equation of the unit sphere, we obtain the

equation of the ellipsoid, as 1 = uᵀu = xᵀΦΛ
1
2
3 Λ

1
2
3 Φᵀx = xᵀΦΛ3Φ

ᵀx = xᵀC′3x.
The desired polyhedron has to fulfil at least the following criteria: a) the criticality should be
the same for all vertices; b) this criticality (≥ 1) should be as small as possible, in order to
efficiently approximate the actual envelope; c) it should have as few vertices as possible and d)
the generalization of the coordinates of the vertices in n dimensions, n ≥ 3, should be as easy
and natural as possible. The most regular polyhedra are the 5 Platonic solids whose surfaces
are composed of only one type of regular polygons. They are the tetrahedron, the hexahedron
(or cube), the octahedron, the dodecahedron and the icosahedron. However, only the icosahe-
dron, with 12 vertices and the criticality

√
15− 6

√
5 ≈ 1.2584 (given as the ratio of the radius

of the circumscribed sphere and the radius of the inscribed sphere), is a possible candidate.
The other 4 solids have either too many vertices (e.g. 20 for the dodecahedron, which has the
same criticality as the icosahedron) or the criticality is too high (e.g. 3 for the tetrahedron and√

3 ≈ 1.732 for the hexahedron and octahedron). The 12 vertices of an icosahedron with edge-
length 2 and centred at the origin are described by all the cyclic permutations of [0,±1,±ϕ],
where ϕ := 1+

√
5

2
≈ 1.618 is the golden ratio. The coordinates of the n ·2n−1 vertices for n ≥ 4

11
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are given possibly by all the cyclic permutations of [0,±1,±1, . . . ,±ϕ].
The next class of polyhedra is given by the Archimedean solids first enumerated by Archimedes.
They are also called semiregular convex polyhedra and are composed of regular polygons of at
least two types meeting in identical vertices. Apart from the prisms and antiprisms, there are
only 13 Archimedean solids (cf. [17, pp. 136-140]). Under these 13 solids there are two with

only 12 vertices, namely the truncated tetrahedron with criticality
√

11
3
≈ 1.9149 and the cuboc-

tahedron with criticality
√

2 ≈ 1.4142. Four solids, namely the truncated cube, the truncated
octahedron, the snub cube and the small rhombicuboctahedron (or expanded cube) have 24
vertices, the first one with criticality 1.4736, the second 1.291, the third 1.176 and the fourth√

7− 4
√

2 ≈ 1.1589. All other Archimedian solids have more than 30 vertices (but some of
them have a low criticality).
We selected the small rhombicuboctahedron with edge-length 2 as circumscribing regular poly-
hedron for the design loads ellipsoid (see Fig. 3). This solid can be obtained either by expansion
of a cube or can be constructed as the convex hull of the 24 vertices given by all distinct per-
mutations of [±1,±1,±(1 +

√
2)]. It has 26 faces (8 triangular and 18 square faces) and 24

identical vertices, with one triangle and three squares meeting at each vertex. By Euler’s poly-
hedron formula v − e+ f = 2, where v is the number of vertices, e the number of edges and f
the number of faces, it follows that the small rhombicuboctahedron has e = 48 edges.
In order to circumscribe the unit sphere by a rhombicuboctahedron, we have to normalize the
coordinates of the vertices by (1 +

√
2), since this value is the radius of the insphere of the

rhombicuboctahedron with edge-length 2. This means that all vectors obtained permuting the
coordinates w := 1

1+
√
2
[±1,±1,±(1+

√
2)]ᵀ = [±(

√
2−1),±(

√
2−1),±1]ᵀ lie on the sphere

given by wᵀw = 7−4
√

2. By means of Eq. (54), we obtain from the coordinates of the vertices
of the rhombicuboctahedron the design points of the polyhedron circumscribing the ellipsoid as
(see Fig. 4)

xP = ΦΛ
− 1

2
3 w (55)

All these design points with position vector xP have the same criticality, namely

Figure 3: Small rhombicuboctahedron with edge-
length 2.

Figure 4: Transformed rhombicuboctahedron circum-
scribing the ellipsoid of equal probability
density. Mahalanobis distance 1.1589.

12
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cr(P ) =
√

xᵀ
PC′3xP =

√
det(R3)dM(xP ,0) =

dM(xP ,0)

dM(x,0)
(56)

where x is a point on the ellipsoid and dM(xP ,0) is the Mahalanobis distance (in the three-
dimensional space) between xP and the origin.
Eq. (56) can be calculated by using Eq. (54) and it is

cr(P ) =
√

xᵀ
PC′3xP =

√
wᵀΛ

− 1
2

3 ΦᵀC′3ΦΛ
− 1

2
3 w =

√
wᵀw =

√
7− 4

√
2 ≈ 1.1589 (57)

Remark 5.1 With this new approach it is not necessary any more to calculate additional points
in order to construct a circumscribing polyhedron. This is true for all n ≥ 2.

5.3 The n-dimensional case, n ≥ 2

The n-dimensional Gaussian probability density function is given by

f(x1, . . . , xn) :=

√
det(Cn)

(2π)n/2
e−

1
2
Gn(x1,...,xn), −∞ < x1, . . . , xn < +∞ (58)

where the quadratic form Gn(x1, . . . , xn) is defined by

Gn(x1, . . . , xn) := (x− x0)
ᵀCn(x− x0) (59)

and Cn is the inverse matrix of the symmetric and positive definite covariance matrix Σn of the
loads X1, . . . , Xn, i.e.:

Cn := Σ−1n = diag (1/σx1 , · · · , 1/σxn) R−1n diag (1/σx1 , · · · , 1/σxn) (60)

Moreover, x :=
[
x1, . . . , xn

]ᵀ is the position vector, x0 :=
[
(x1)0, . . . , (xn)0

]ᵀ is the vector of
the means or steady-state components and Rn is the correlation matrix of the loadsX1, . . . , Xn.
As in the cases n = 2, 3 we make the translation x′ := x − x0 in order to have the centre of
the n-dimensional ellipsoid at the origin. By means of this transformation (and writing the new
coordinates without primes) the design load envelope has the form

Qn(x1, . . . , xn) := xᵀC′nx = 1 (61)

with C′n := det(Rn)Cn and det(Rn) > 0. The design load envelope is an n-dimensional
ellipsoid circumscribed by the n-orthotope (also called a hyperrectangle) defined by the hyper-
planes x1 = ±x1max , . . . , xn = ±xnmax . Note that a 1-orthotope is a segment, a 2-orthotope is
a rectangle and a 3-orthotope is a rectangular parallelepiped.
The points of tangency of the n-dimensional ellipsoid with the circumscribing n-orthotope are
determined by (see Eq. (48))

C′nxIi = µiei, i = 1, . . . , n (62)

where xI1 :=
[
x1I1 , . . . , xnI1

]ᵀ
, . . . ,xIn :=

[
x1In , . . . , xnIn

]ᵀ are the position vectors of the
points I1, . . . , In, and ei (i = 1, . . . , n) is the unit vector in direction of the xi-axis with the
i-th component equal to 1 and zero for all other components. Furthermore, µ1, . . . , µn are real
numbers (not needed for our investigation) and both ei and C′nxIi are two normal vectors to the

13
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plane xi = ximax .
Noting that C′n := det(Rn)Σ−1n we have from (62)

det(Rn)Σ−1n xIi = µiei, i = 1, . . . , n

and solving for xIi
xIi =

µi
det(Rn)

Σnei, i = 1, . . . , n (63)

From these equations, it follows for instance for i = 1

x1I1 =
µ1

det(Rn)
σ2
x1
, . . . , xnI1

=
µ1

det(Rn)
ρx1xnσx1σxn (64)

Since x1I1 = x1max , the first equation can be solved with respect to µ1 obtaining µ1 = det(Rn) ·
x1max/σ

2
x1

. Substituting this expression into the last n− 1 equations and simplifying we obtain

x2I1 = ρx1x2
σx2
σx1

x1max , . . . , xnI1
= ρx1xn

σxn
σx1

x1max (65)

Inserting the coordinates [x1I1 , . . . , xnI1
]ᵀ of the point I1 into (61) and solving the resulting

equation for σx1 we obtain
σx1 =

√
det (Rn) · x1max (66)

Repeating these calculations for i = 2, . . . , n, all the coefficients µi = det(Rn) · ximax/σ
2
xi

and
all the standard deviations σxi , i = 1, . . . , n can be determined

σxi =
√

det (Rn) · ximax (67)

Inserting these values into (63) we finally determine the coordinates of the points I1, . . . , In
expressed by means of the correlation coefficients and the maximum values

xIi =
ximax

σ2
xi

Σnei (68)

which can be simplified as

I1(x1max , ρx1x2x2max , . . . , ρx1xnxnmax), . . . , In(ρx1xnx1max , ρx2xnx2max , . . . , xnmax) (69)

By means of the half-turn x′ = −x, we obtain the remaining points of tangency with the cir-
cumscribing n-orthotope, I ′1, . . . , I

′
n, since the ellipsoid is symmetric with respect to the origin.

As mentioned in remark 5.1, we do not need any more to calculate additional points, the new
(conservative) design points are given by the vertices of the n-dimensional rhombicuboctahe-
dron, which can be derived as in Section 5.2.1.
Let us start with the unit n-sphere, n ≥ 2, and let u := [u1, . . . , un]ᵀ be the position vec-
tor of a point of the unit n-sphere, Λn := diag(λ1, . . . , λn) be the diagonal matrix of the
eigenvalues of C′n and Φ be the n × n orthogonal matrix consisting of the eigenvectors of
C′n. Then C′n can be factorized as C′n = ΦΛnΦ

ᵀ. The vertices of the n-dimensional small
rhombicuboctahedron circumscribing the unit n-sphere are given by all distinct permutations of
w := 1

1+
√
2
[±1,±1, . . . ,±(1 +

√
2)]ᵀ = [±(

√
2− 1),±(

√
2− 1), . . . ,±1]ᵀ (n coordinates). In

total there are n · 2n vertices lying on the n-sphere given by wᵀw = (n − 1)(
√

2 − 1)2 + 1 =
(3n− 2)− 2(n− 1)

√
2. By means of (54), we obtain the position vectors xP of the vertices of

the circumscribing polytope as
xP = ΦΛ

− 1
2

n w (70)
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They all lie on the n-dimensional ellipsoid given by xᵀ
PC′nxP = wᵀΛ

− 1
2

n ΦᵀC′nΦΛ
− 1

2
n w =

wᵀw = (3n− 2)− 2(n− 1)
√

2 and all have the same criticality, namely

cr(P ) =
√

xᵀ
PC′nxP =

√
(3n− 2)− 2(n− 1)

√
2 (71)

that is
√

4− 2
√

2 ≈ 1.08239 for n = 2,
√

7− 4
√

2 ≈ 1.15894 for n = 3,
√

10− 6
√

2 ≈
1.23074 for n = 4,

√
13− 8

√
2 ≈ 1.29857 for n = 5 and so on.

6 APPLICATIONS

The methods described in the previous sections were applied to two different problems: the
delta wing of a fighter aircraft flying in the transonic regime at high angles of attack (Fig. 5)
and one of the main landing gear doors of an A320 airplane subjected to the turbulent flow
during take-off and landing (Fig. 6). Scope of both studies was the determination of the levels
of the structural vibrations at different locations, as well as the calculation of the loads at pre-
defined monitoring stations.

Figure 5: Photo of a modern fighter aircraft (Source:
Wikipedia).

Figure 6: Airbus A320-214 with main landing gear
doors open. Nose and main landing gears are
in transit (Source: Wikipedia).

In the first example, the unsteady pressure distribution on the delta wing was measured during
wind-up turn manoeuvres in a flight test campaign. A plain regular grid (namely the aerody-
namic grid) was generated within two plain trapezoidal panels (one for the wing and the other
for the tip pod) by using a parametric bilinear surface (the hyperbolic paraboloid). The pres-
sures, considered orthogonal to the two panels, were interpolated on the aerodynamic grid and
their auto- and cross-spectra were computed (see Fig. 7 and Fig. 8). The pressures were then
integrated as described in section 2, obtaining a statically equivalent force distribution on the
same grid (Fig. 9). The forces were interpolated on the structural grid of an FEM using sur-
face splines, as described in section 3 and shown in Fig. 10. The stochastic analysis of section
4 was performed, computing auto- and cross-spectra of accelerations at several nodes of the
wing as well as loads at all the predefined monitoring stations. As an example, a comparison
of numerical (red curve, square markers) and measured (blue curve, circle markers) PSD of
the accelerations at the wing tip is shown in Fig. 11. In Fig. 12, the three-dimensional load
envelope at the wing root monitoring station is shown with its two-dimensional projections and
with the circumscribing transformed rhombicuboctahedron. The vertices of this polyhedron are
the desired design load cases for this specific monitoring station.
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Figure 7: RMS of the pressures measured on the wing
upper surface and interpolated on the aerody-
namic grid.

Figure 8: RMS of the pressures measured on the wing
lower surface and interpolated on the aerody-
namic grid.

Figure 9: RMS of the forces on the aerodynamic grid
of the delta wing.

Figure 10: RMS of the forces on the structural grid of
the delta wing.

Figure 11: Numerical (red curve, square markers) and
measured (blue curve, circle markers) PSD
of the accelerations at the wing tip.

Figure 12: Three-dimensional load envelope and its
two-dimensional projections. Wing root
monitoring station.
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In the second example, the unsteady pressures on one of the main landing gear doors were
obtained numerically from CFD. For simplicity, the door was shaped with six panels and the
pressures were considered orthogonal to them. The pressures were then interpolated over a
regular three-dimensional aerodynamic grid generated within these panels (namely the aero-
dynamic grid, also in this case created by using a parametric bilinear surface, the hyperbolic
paraboloid). Auto- and cross-spectra of the difference between the pressures on the outer and
inner surfaces of the door were computed, whose RMS values are shown in Fig. 13. Like in the
previous example, the pressures were integrated on the aerodynamic grid (see Fig. 14). Surface
splines were then used to interpolate the aerodynamic forces on the grid of an FEM, as shown
in Fig. 15. The buffeting analysis described in section 4 was finally performed, computing dis-
placements and accelerations at several nodes of the door in terms of auto- and cross-spectra, as
well as the reaction forces at the hinges and at the actuator fitting. The comparison of numerical
(red curve, square markers) and measured (blue curve, circle markers) PSD of the actuator loads
is shown in Fig. 16.

Figure 13: RMS of the pressures on the aerodynamic
grid of the main landing gear door. The six
panels are shown as unfolded.

Figure 14: RMS of the forces on the aerodynamic grid
of the main landing gear door.

Figure 15: RMS of the forces on the structural grid of
the main landing gear door.

Figure 16: Numerical (red curve, square markers) and
measured (blue curve, circle markers) PSD
of the actuator loads.
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7 CONCLUSIONS

In this paper, a complete method is described for predicting n-dimensional combined loads in
the presence of massively separated flows, when both the unsteady pressure distribution and
a structural model are available. An n-dimensional load envelope is obtained, which contains
equally probable combinations of loads between their minimum and maximum values.
The geometrical shape of the design load envelope is also investigated for n ≥ 2 Gaussian
distributed combined loads, deriving the equation of the n-dimensional ellipsoid and some im-
portant points on it, like the points of tangency with the circumscribing n-orthotope, which are
the maximum loads.
In order to obtain a finite number of design load cases, a new method for discretizing the n-
dimensional ellipsoid is introduced by using a transformed small rhombicuboctahedron. This
semiregular polyhedron has the benefit that the criticality, which measures the introduced con-
servatism with respect to the ellipsoid, is always ≥ 1 and it is the same for all vertices. The
small rhombicuboctahedron provides also an excellent compromise in maintaining small both
the criticality and the number of design load cases, two requirements which are generally anti-
thetical. Furthermore, the generalization of the coordinates of its vertices to n dimensions, with
n ≥ 2, is straightforward, allowing an easy implementation of the method in computer codes.
As well as for any discretization technique, both the criticality and the number of vertices in-
crease with the number of considered load components. Hence, it is first important trying to
reduce the overall number of considered load components (e.g. the shear, the bending and the
torsion could be the only loads that one needs to consider for a wing). Secondly, many load
components could not be correlated with the others and, for this reason, they could be studied
separately (namely different parts of the aircraft could be studied independently, for instance the
fin and the wing). Thirdly, once the vertices of the rhombicuboctahedron have been computed,
one can still neglect many of the resultant load cases from the analysis. For instance, load com-
ponents that are highly correlated will be represented by a stretched ellipsoid. Only the most
significant among the most correlated load cases could be maintained, since highly correlated
load cases, close to a vertex of the stretched ellipsoid, will be almost identical.
The applicability of the methodologies herein described was proved with two different prob-
lems. In the first case, the buffeting of the delta wing of a modern fighter aircraft, flying at high
angles of attack in the transonic regime, was studied using the unsteady pressure distribution
measured during a flight test campaign. In the second case, the buffeting of one of the main
landing gear doors of an A320 airplane, subjected to the turbulent flow during take-off and
landing, was studied using the unsteady pressures computed numerically from CFD. Both cases
show excellent results when compared with test measurements, demonstrating that the same
algorithms can be adopted both using numerical data and test measurements.
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NOMENCLATURE

Acronyms

CFD computational fluid dynamics

DOF(s) degree(s) of freedom

FEM finite element model

PSD power spectral density

RMS root-mean-square
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Greek Symbols
ω angular frequency

ωj angular natural frequencies

Φ modal matrix

ρ correlation coefficient

σ standard deviation (root-mean-square if the
mean is zero)

ξ modal amplitudes

ξ̈ modal accelerations

ξ̇ modal velocities

ζ ratio of damping to critical damping

Latin Symbols
det determinant

Cn inverse of the covariance matrix, Σ−1n

B̃ modal damping, diag(2ζ1ω1, . . . , 2ζnωn)M̃

c number of vertices of the r-th cell of the
aerodynamic mesh

c reference length

Cor, Rn n× n correlation matrix

Cov, Σn n× n covariance matrix

cr criticality

f nodal forces

g structural damping

Gkg transformation matrix of the surface spline

H transfer function

J number of correlated parts of the structure

j
√
−1

k reduced frequency, ωc
2U∞

K stiffness

K̃ generalized stiffness, ΦᵀKΦ

M mass

M̃ generalized mass, ΦᵀMΦ

Ma Mach number

n number of degrees of freedom

n normal versor

p nodal pressures

Q̃ generalized aerodynamic forces

q∞ dynamic pressure

R number of cells of the aerodynamic mesh

S spectrum

T transformation matrix

ü physical accelerations

u̇ physical velocities

u physical displacements

U∞ free stream velocity

Uσ factor

Var variance, diag(Cov)

Y nodal loads

YMS integrated loads

Matrix Notation
[ ]+ Moore-Penrose pseudoinverse

[ ]† conjugate transpose

[ ]ᵀ transpose

[ ]−1 inverse

⊕ direct sum

⊗ Kronecker product

diag( ) diagonal matrix

Subscripts and Superscripts
e expanded

g indicates relationship to the FEM mesh

k indicates relationship to the aerodynamic
mesh

max maximum

min minimum

r indicates relationship to a cell of the aerody-
namic mesh

X,Y, Z indicates relationship to the global coordi-
nate system

xr, yr, zr indicates relationship to the local coordi-
nate system of the r-th cell of the aerody-
namic mesh. The xr- and yr-axis are in the
cell plane and the zr-axis is normal to the
cell plane

Other Symbols
= imaginary part

< real part
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