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Abstract 

This paper presents the authors' advancements in the investigation of flow instabilities encountered 
during hypersonic flight. It encapsulates several significant findings, as follows: 1) Elucidation of the 
excitation mechanisms governing the evolution of the three-dimensional boundary layer at the vehicle 
nose, with particular emphasis on the impact of thermal–chemical nonequilibrium effects. 2) 
Observation of a notable decay in disturbance growth-rate oscillation downstream of the turning point, 
where the unstable supersonic mode transitions back to the subsonic regime. 3) Discovery of novel 
modes of crossflow vortices occurring on the surface of swept wings. 

Keywords: Hypersonics, Stability analyses, High Enthalpy Flow, Swept Leading Edge Flow,Concave 
Surface 

Nomenclature 

TCNE – Thermal–Chemical Nonequilibrium  
CPG – Calorically Perfect Gas 
LST – Linear stability theory 
PSE – Linearized Navier-Stokes 
DNS – Direct numerical simulation 

Ma – Mach number 
Re – Reynolds number 
T – Temperature 
Pr – Prandtl number 
γ – Specific heat ratio 

1. Introduction 

Hypersonic technology stands as a disruptive force shaping the future landscape of warfare and 
representing a new pinnacle in aerospace technology. Presently, the advancement of near space vehicle 
approaching hypersonic regimes has extended to broader airspace and higher Mach numbers, 
undertaking trans-atmospheric flights-ranging from regions of elevated density continuum flow to 
sparse flow regions to nearly vacuum free-molecular flow areas, each with vastly differing 
thermodynamic properties. Coupled with high Mach numbers and low environmental pressure/density 
characteristics, these flow fields exhibit pronounced thermochemical non-equilibrium effects [1], 
significantly increasing the predictive challenges concerning aerodynamic thermal environments of near 
space vehicles and the thermal response of ablative materials: on one hand, under high temperature, 
the excitation of gas particle vibrational energy/electron energy and chemical reaction absorption of 
substantial energy diminishes flow field temperature, thereby alleviating aerodynamic heating; on the 
other hand, within the thin boundary layer near the vehicle's surface, a series of composite reactions 
occur between surface materials and gas atoms, ions, leading to phenomena such as surface oxidation, 
catalysis, and ablation, releasing significant heat and altering gas composition and energy distribution 
near the surface. Additionally, thermochemical non-equilibrium effects, wall material 
ablation/pyrolysis/micro-ablation/oxidation products, cause changes in parameters such as shockwave 
position and shape, separation zone size, thus affecting the aerothermal loads on the vehicle [2]. 

Of greater concern, when trans-atmospheric vehicles swiftly entre into lower airspace (between 
altitudes of 40 to 60 kilometers), air density is considerably higher compared to the upper atmosphere 
(corresponding to much higher Reynolds numbers), inevitably leading to laminar-to-turbulent transition. 
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Thermal flux on the vehicle's surface grows 3 to 5 times more within the transition region compared to 
laminar states. Multiple hypersonic flight accidents have been attributed to flow transition. For instance, 
the tragic incident involving the US Columbia Shuttle: the impact of debris from a detached fuel tank 
striking the left wing's thermal protection panel caused a local protrusion, leading to flow transition, 
separation, and shockwave interference on the left wing during re-entry, resulting in a drastic increase 
in local temperature and ultimately the loss of control and destruction of the vehicle. Similar localized 
shell erosion also contributed to the failure of the US Falcon HTV-2 inaugural flight test, attributed one 
of the reasons to the "blind spots in understanding hypersonic boundary layer transition" [3]. 

Predicting transition is a significant fundamental scientific issue facing hypersonic vehicles, receiving 
high attention globally [3]. The US Hypersonic Research Program NHFRP (2010-2030) lists boundary 
layer transition as a major focus, stating: "The performance of supersonic combustion ramjet engines 
and the prediction of boundary layer transition are the two most critical technical areas. For the 
enhancement of future design capabilities and increased confidence, these two technological areas are 
of equal importance". In addition to theoretical research and ground experiments, dedicated flight tests 
specifically targeting transition are flourishing [1], such as the US-Australian joint HIFire-1 and HIFire-
5 tests, the US X-43A test, and numerous tests conducted in China. 

The transition process strongly depends on the incoming flow and wall conditions [3] and involves 
multiple physical mechanisms. In high-altitude flows, the transition begins with the destabilization of 
laminar flows, encompassing four stages: receptivity (disturbance generation), linear stability (linear 
evolution of disturbances), nonlinear evolution of disturbances, and turbulence. Typical hypersonic 
vehicle flow instabilities include leading-edge instability (attachment-line mode), streamwise instability 
(1st and 2nd Mack modes, etc.), centrifugal instability (e.g., Görtler mode), crossflow instability 
(crossflow mode), and shear-layer instability (roughness elements, steps, etc.). 

The flow transition process during trans-atmospheric flight is highly coupled with high-temperature gas 
effects. The dramatic increase in heat flux caused by flow transition accelerates high-temperature gas 
reactions and wall ablation and catalysis. However, the mechanisms by which high-temperature gas 
effects and wall effects influence the transition process remain unclear: on one hand, high-temperature 
gas effects lead to changes in the laminar boundary layer (reduced temperature and boundary layer 
thickness), triggering Mack mode disturbances and promoting transition; on the other hand, if 
thermochemical non-equilibrium processes absorb disturbance energy, transition is delayed, and vice 
versa.  

This paper presents the authors' progress in the study of flow instabilities in hypersonic trans-
atmospheric flight [4-8]. It encapsulates several significant findings, as follows: 1) Elucidation of the 
excitation mechanisms governing the evolution of the three-dimensional boundary layer at the vehicle 
nose, with particular emphasis on the impact of thermal–chemical nonequilibrium effects. 2) 
Observation of a notable decay in disturbance growth-rate oscillation downstream of the turning point, 
where the unstable supersonic mode transitions back to the subsonic regime. 3) Discovery of novel 
modes of crossflow vortices occurring on the surface of swept wings. 

2. Governing equations 

In hypersonic trans-atmospheric flight, the flow temperature increases considerably behind shocks and 
towards the wall, where the vibrational energy and chemical dissociation become significant. A good 
approximation considered is the five-species model of air (𝑁ଶ, 𝑂ଶ, 𝑁𝑂, 𝑁, 𝑂). Additional conservation 
equations of species mass and vibrational energy are needed as compared with CPG flows. The two-
temperature model of Park [2] is adopted, which includes a translational/rotational temperature T and 
a vibrational temperature 𝑇௩ . The resulting Navier–Stokes equations for the TCNE flow take the 
following forms. 

(i) Continuity equation: 

∂𝜌

∂𝑡
+ ∇ ⋅ (𝜌𝒖) = 0 (2.2𝑎) 

(ii) Momentum equation: 

𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝒖) = −𝛻𝑝 + 𝛻 ⋅ 𝝉 (2.2𝑏) 
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(iii) Energy equation: 

𝜕𝜌𝐸

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝐻𝒖) = 𝛻 ⋅ ൭𝒖 ⋅ 𝝉 − 𝒒௧௥ + 𝒒௩ − ෍  

ହ

௠ୀଵ

ℎ௠𝒅௠൱ (2.2𝑐) 

(iv) Species continuity equation (species index s ∈ [2, 5]): 

 

𝜕𝜌௦

𝜕𝑡
+ 𝛻 ⋅ (𝜌௦𝒖) = −𝛻𝒅௦ + 𝜔̇௦ (2.2𝑑) 

(v) Vibrational energy equation: 

∂𝜌𝑒௩

∂𝑡
+ ∇ ⋅ (𝜌𝑒௩𝒖) = −∇ ൭𝒒௩ + ෍  

ଷ

௠ୀଵ

𝑒௩,௠ + 𝒅௠൱ + 𝑄௧ି௩ (2.2e) 

 
(vi) Equation of state: 

𝑝 = 𝜌𝑅𝑇 = 𝜌𝑇 ෍  

ହ

௠ୀଵ

𝑅௠𝑌௠ (2.2𝑓) 

Here ρ and p are the density and pressure; T[ , , ]u v wu  is the velocity vector; 𝑐௣,t−r and 𝑐௩௜௕ =∂𝑒௩/𝜕𝑇௩ 
are the translational–rotational and vibrational components of specific heat, respectively, where 𝑒௩ 
denotes the specific vibrational energy; the species mass fraction 𝑌௦ = 𝜌௦/𝜌 and 𝑅௦ is the species gas 
constant; ℎ௦ denotes the species specific enthalpy; and the species vibrational energy is calculated 
using the characteristic vibrational temperature [9]. 

The mixture’s viscosity μ and thermal conductivity 𝑘௧ି௥and 𝑘௩ are calculated through the relations from 
Gupta et al. [10], which are as accurate as the solution of the first-order Chapman–Enskog 
approximation in the absence of ions [11]. The molecular collision integrals required in the relations 
are evaluated from the curve fits of Capitelli et al. [12]. The mass diffusion coefficient 𝜌𝐷𝑠𝑚  is 
associated with 𝜇 through a constant Schmidt number 𝑆௖ = 0.5. Miró et al. [9,13] concluded that the 
use of different mass-diffusion models or a moderate variation of 𝑆௖  had small influences on the 
boundary layer instabilities. The source terms 𝑄௧ି௩ and 𝜔௦̇  describe the finite-rate energy relaxation 
and chemical reactions, respectively. The energy relaxation between transitional and vibrational 
components is modelled using the Landau–Teller equation [14]. 

Five chemical reactions among the five species are considered here: 

𝑅ଵ: 𝑁ଶ + 𝑀   ↔ 2𝑁 + 𝑀
𝑅ଶ: 𝑂ଶ + 𝑀   ↔ 2𝑂 + 𝑀
𝑅ଷ: 𝑁𝑂 + 𝑀  ↔ 𝑁 + 𝑂 + 𝑀
𝑅ସ: 𝑁ଶ + 𝑂    ↔ 𝑁𝑂 + 𝑁
𝑅ହ: 𝑁𝑂 + 𝑂   ↔ 𝑂ଶ + 𝑁 ⎭

⎪
⎬

⎪
⎫

(2.3) 

where 𝑀 is a third body. The chemical equilibrium constants are calculated based on the species Gibbs 
free energy fitted by McBride, Zehe & Gordon [15]. The forward reaction constants are from the 
relations of Park, Jaffe & Partridge [16]. 

The ten basic variables of Eq.(2.2) are 𝒒 = [𝜌, 𝑢, 𝑣, 𝑤, 𝑇, 𝑌௦, 𝑇௩]  with 𝑠 ∈ [2,5] . Hence Eq.(2.2) is 
expressed in an operator form as 

N (𝒒) = 𝑺(𝒒)                                                        (2.4) 

where the operator N includes unsteady, convection and diffusion terms, while 𝐒 denotes the TCNE 
source term related to 𝜔̇௦ and 𝑄௧ି௩. The combination of 𝜌 and four 𝑌௦, rather than five 𝜌௦, is selected 
as the basic variables here because once 𝑺 is set to 𝟎, 𝑌௦ and 𝑇௩ are constants throughout the flow field 
under homogeneous boundary conditions, then Eq.(2.2) reduces to the same form as that for CPG 
flows: N (𝒒) = 𝟎. 

3. Numerical methods 
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3.1. Laminar flow solver 

A steady laminar flow is required prior to stability analyses. In this work, Eq.(2.2) is solved in Cartesian 
coordinates through a fifth-order shock-fitting solver [17]. Two implicit time-marching schemes are 
utilized for efficiency increase, including GMRES (generalized minimal residual) and line relaxation 
methods. As the swept body is of infinite span, the flow is assumed to be uniform in the spanwise 
direction. The boundary conditions at the wall are no-slip, isothermal or adiabatic, and non-catalytic, 
i.e. (∂𝑌௦/ ∂𝜂)௪ = 0  . In the far field, the boundary is located at the shock, and the post-shock 
parameters are obtained from the Rankine–Hugoniot relation. A symmetry condition is imposed at the 
boundary of 𝑠 = 0. A non-reflecting boundary condition is adopted for the outflow boundary based on 
characteristic variables.  

Sufficient grid points of 401 are used in the wall-normal direction to ensure grid independence (see 
supplementary material available at https://doi.org/10.1017/jfm.2022.607 for details). In the 
streamwise direction, the grid density required for a converged laminar flow is lower than that for NPSE 
calculations, so it is determined by the latter. At most, around 40 points are distributed within one 
streamwise wavelength of disturbance mode. 

3.2. Linear instability theory and parabolized stability analysis 

Here LST and PSE are used to efficiently calculate the linear and nonlinear growth of the cross-flow 
disturbance. Their frameworks are briefly described below as widely used techniques [18]. The variable 
𝒒ഥ is decomposed into a steady laminar part 𝒒ഥ and a disturbed part 𝒒෥ .Here 𝒒ഥ = [𝜌̅, 𝑈ഥ, 𝑉ത, 𝑊ഥ , 𝑇ത, 𝑌ത௦, 𝑇௩]is the 
laminar flow solution, and 𝒒෥ = [𝜌෤, 𝑢෤, 𝑣෤, 𝑤෥, 𝑇෨, 𝑌෨௦, 𝑇෨௩]  is the disturbance. The disturbance governing 
equation is written as 

  N (𝒒̄ + 𝒒෥) − N (𝒒̄) = 𝑺(𝒒̄ + 𝒒෥) − 𝑺(𝒒̄)                                                          (3.1) 

The expanded matrix form of Eq.(3.1) in the(𝑠 − 𝜂 − 𝑧)coordinates is 

𝑭
𝜕𝒒෥

𝜕𝑡
+

𝑨

ℎଵ

𝜕𝒒෥

𝜕𝑠
+ 𝑩

𝜕𝒒෥

𝜕𝜂
+ 𝑪

𝜕𝒒෥

𝜕𝑧
+ 𝑫𝑞෤ =

𝑯௦௦

ℎଵ
ଶ

𝜕ଶ𝒒෥

𝜕𝑠ଶ
+ 𝑯ఎఎ

𝜕ଶ𝒒෥

𝜕𝜂ଶ

+𝑯௭௭

𝜕ଶ𝒒෥

𝜕𝑧ଶ
+

𝑯௦ఎ

ℎଵ

𝜕ଶ𝒒෥

𝜕𝑠𝜕𝜂
+

𝑯௦௭

ℎଵ

𝜕ଶ𝒒෥

𝜕𝑠𝜕𝑧
+ 𝐻ఎ௭

𝜕ଶ𝒒෥

𝜕𝜂𝜕𝑧
+ 𝑵

(3.2) 

Hereℎଵ = 1 + 𝜅଴𝜂 is the Lamé coefficient related to the streamwise curvature κ଴; matrices𝑭, 𝑨, 𝑩, 𝑪, 𝑫 
and 𝑯 are all 10 × 10 matrices just dependent on 𝒒ഥ; and 𝑵 represents the nonlinear term. The 
expressions of these matrix coefficients are very elaborate, especially in TCNE flows, and the software 
MAPLE is thus employed to ensure correctness. The following Fourier decomposition of a disturbance 
is introduced: 

𝒒෥(𝑠, 𝜂, 𝑧, 𝑡) = ෍  

𝑴೘ೌೣ

௠ୀି𝑴೘ೌೣ

෍  

ே೘ೌೣ

௡ୀି𝑵೘ೌೣ

𝒒ෝ௠௡(𝑠, 𝜂) exp ቈ𝑖 ቆන  
௦

௦బ

𝛼௠௡(𝑠)𝑑𝑠 + 𝑛𝛽𝑧 − 𝑚𝜔𝑡ቇ቉ (3.3) 

where 𝑀୫ୟ୶ and 𝑁୫ୟ୶ represent one-half of the number of modes kept in the truncated Fourier series; 
𝑠଴ is the computational onset; 𝜔 and 𝛽 are the specified circular frequency and spanwise wavenumber, 
respectively; 𝛼௠௡ = 𝛼௠௡,௥ + 𝑖𝛼௠௡,௜ is the complex streamwise wavenumber; and 𝒒̂୫୬  stands for the 

shape function. A phase velocity is defined as 𝑐௠௡,௥ = 𝑚𝜔/ൣ𝛼௠௡,௥
ଶ + (𝑛𝛽)ଶ൧

ଵ/ଶ
. For brevity, a notation 

(𝑚, 𝑛) is introduced for the mode with a circular frequency of 𝑚𝜔 and a spanwise wavenumber of 𝑛𝛽. 
Mode (0,0) is also called mean flow distortion, as a modification to the laminar flow after temporal and 
spanwise average. 

The PSE for each mode takes the following form: 

𝑨෡௠௡

∂𝒒ෝ௠௡

∂𝑠
= − ቆ𝑫෡ ௠௡𝒒ෝ௠௡ + 𝑩෡ ௠௡

∂𝒒ෝ௠௡

∂𝜂
+ 𝑪෡௠௡

∂ଶ𝒒ෝ௠௡

∂𝜂ଶ
ቇ + 𝑵෡ ௠௡ exp ቆ−𝑖 න  

௦

௦బ

𝛼௠௡𝑑𝑠ቇ (3.4) 

where the matrix coefficients are functions of 𝛼௠௡ , 𝑚𝜔, 𝑛𝛽 and the matrices in Eq.(3.2), and 𝑵̂୫୬ is the 
Fourier component of 𝑵 and acts as a nonlinear forcing term. For LST, the nonlinear term is neglected 
and the flow is further assumed to be locally parallel, i.e. ∂/ ∂s = 0. Hence the base wall-normal velocity 
is also assumed zero from the continuity equation. As a result, an eigenvalue problem is established for 
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each Fourier mode [19]. For PSE analysis, Eq.(3.4) is solved through a streamwise marching procedure. 
The auxiliary condition adopted to determine 𝛼௠௡ is based on the disturbance kinetic energy. The wall-
normal discretization uses the Chebyshev collocation point method and the streamwise one uses the 
Euler scheme. In addition, a relaxation factor is introduced to improve numerical robustness at large 
amplitudes of harmonic waves [20]. 

The disturbance boundary conditions at the wall are consistent with those for laminar flow: 

At 𝜂 = 0: 𝑢ො௠௡ = 𝑣ො௠௡ = 𝑤ෝ௠௡ =
∂𝑌෠௦,௠௡

∂𝜂
= 0, ቐ

𝑇෠௠௡ = 𝑇෠௩,௠௡ = 0,      if isothermal 

∂𝑇෠௠௡

∂𝜂
=

∂𝑇෠௩,௠௡

∂𝜂
= 0,      if adiabatic 

(3.5) 

The 𝜌ො௠௠ at the wall is solved through the disturbed continuity equation. For the boundary conditions 
at the shock, the disturbed Rankine–Hugoniot relation is solved to account for the shock–disturbance 
interaction [21]. 

The present PSE solver for TCNE flows has been verified with the DNS data in the authors’ previous 
works [5,6]. Comparisons with the existing results of cross-flow instability cases are provided in the 
supplementary material. 

3.3. Secondary instability analysis 

Large-amplitude cross-flow vortices are subject to various types of high-frequency instabilities. The SIT 
can be used to obtain the disturbance characteristics by solving the instability equation on the distorted 
base flow. For stationary cross-flow vortices, the NPSE solution is written as 

𝒒෥ே௉ௌா(𝑠, 𝜂, 𝑧) = ෍  

௡

𝐴଴௡𝒒ෝ଴௡ exp ቈ𝑖𝑛 ቆන  
௦

௦బ

𝛼௥𝑑𝑠 + 𝛽𝑧ቇ቉ (3.6) 

where 𝐴଴௡ is the mode's amplitude and 𝛼௥ stands for the real part of the fundamental wavenumber. 
Therefore, the distorted base flow is 𝒒‾ ᇱ = 𝒒‾ + 𝒒̃ே௉ௌா, and the secondary instability disturbance to be 
solved is 𝒒̃ୱୢ. The exponent in Eq.(3.6) depends on two coordinates, so a coordinate transformation is 
introduced to make the exponent one-coordinate-dependent. The wave front 𝑧௥ = 𝑧௥(𝑠௥) is 

𝑧௥ = න  
௦ೝ

௦బ

𝑡𝑎 𝑛 𝜃ଶ𝑑𝑠 + 𝑧଴ , 𝑡𝑎 𝑛 𝜃ଶ = −
𝛼௥

𝛽
(3.7a, b) 

where 𝜃ଶ  is the slope angle and 𝑧଴  is a reference point. Physically, the tangent line indicates the 
direction of the cross-flow vortex axis, and thus a local vortex-oriented coordinate (𝑠ଶ − 𝜂ଶ − 𝑧ଶ), with 
its origin at (𝑠 = 𝑠௥ , 𝜂 = 0, 𝑧 = 𝑧௥), can then be defined as 

𝑠ଶ = (𝑧 − 𝑧௥) sin 𝜃ଶ + (𝑠 − 𝑠௥) cos 𝜃ଶ

𝑧ଶ = (𝑧 − 𝑧௥) cos 𝜃ଶ − (𝑠 − 𝑠௥) sin 𝜃ଶ

𝜂ଶ = 𝜂                                                       
ቑ (3.8) 

  

Figure 1. Definition of the vortex-oriented coordinates. 

A schematic of this vortex-oriented coordinate is provided in Figure 1. A locally parallel flow is further 
assumed in SIT, such that at a given location 𝑠 = 𝑠௥, the s-derivatives of 𝐴଴௡𝒒̂଴௡ are much smaller than 
the 𝜂-derivatives, so the 𝑠-dependence of 𝐴଴௡, 𝛼௥ and 𝒒̂଴୬ is neglected in a small region near 𝑠௥ [22, 
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23]. This is reasonable because strong secondary instability usually occurs where the cross-flow vortices 
are saturated. Consequently, the disturbance in Eq.(3.6) near 𝑠 = 𝑠௥ is rewritten as 

𝒒෥NPSE (𝜂ଶ, 𝑧ଶ) = ෍  

௡

𝐴଴௡𝒒ෝ଴௡(𝜂ଶ) exp(𝑖𝑛𝛽ଶ𝑧ଶ) (3.9) 

where 𝛽ଶ = 𝛽/𝑐𝑜𝑠 𝜃ଶ is the 𝑧ଶ-direction wavenumber. As a result of the locally-parallel-flow assumption, 
𝒒̃NPSE  is explicitly independent of 𝑠ଶ and periodic in the 𝑧ଶ direction. 

The velocities in the vortex-oriented coordinates are 

𝑢ଶ = 𝑤 sin 𝜃ଶ + 𝑢 cos 𝜃ଶ , 𝑤ଶ = 𝑤 cos 𝜃ଶ − 𝑢 sin 𝜃ଶ , 𝑣ଶ = 𝑣 (3.10a − c) 

Therefore, the variable in SIT is 𝒒𝟐 = [𝜌, 𝑢ଶ, 𝑣ଶ, 𝑤ଶ, 𝑇, 𝑌௦, 𝑇௩], and the base flow distorted by the stationary 
cross-flow vortex is 

𝒒ഥଶ
ᇱ (𝜂ଶ, 𝑧ଶ) = 𝒒ഥ(𝜂ଶ) + ෍ 𝐴଴௡𝒒ෝଶ,଴௡(𝜂ଶ) exp(𝑖𝑛𝛽ଶ𝑧ଶ)

௡

(3.11) 

Similarly, the disturbance to be solved is replaced as 𝒒̃ଶ,ୱୢ, and the governing equation is 

      N  ൫𝒒ഥଶ
ᇱ + 𝒒෥ଶ,௦ௗ൯ − N   (𝒒ഥଶ

ᇱ ) = 𝑆൫𝒒ഥଶ
ᇱ + 𝒒෥ଶ,௦ௗ൯ − 𝑺(𝒒ഥଶ

ᇱ )                                    (3.12) 

which can be expanded into a similar form to Eq. (3.2) 

Equation (3.12) is solved through the Floquet theory [18], so a temporal-mode solution is written as 

𝒒෥ଶ,௦ௗ = 𝜀 ቐ ෍  

ேೞ೏

௡ୀିேೞ೏

𝒒ෝଶ,௡(𝜂ଶ) exp[𝑖(𝑛 + 𝜎ௗ)𝛽ଶ𝑧ଶ]ቑ exp(𝜔௦𝑡 + 𝑖𝛼௦𝑠ଶ) (3.13) 

where ε is the mode amplitude, 𝜔௦ = 𝜔௦,௥ + 𝑖𝜔௦,௜ the temporal characteristic exponent, 𝜔௦,௥ the mode 
growth rate and 𝜔௦,௜ the shift in the circular frequency. Also, 𝜎ௗ denotes the detuning parameter and 
𝑁௦ௗ  is the truncated orders. The corresponding phase velocity is defined as 𝑐௦,௥ = −𝜔௦,௜/𝛼௦ . After 
substituting Eqs. (3.11) and (3.13) into Eq. (3.12) and neglecting 𝑂(𝜀ଶ) terms, a complex eigenvalue 
problem is obtained: 

A𝑄෠ = 𝜔௦ B 𝑄෠                                                      (3.14) 

 
Here 𝑸̂  is the global eigenvector containing all 𝒒̂ଶ,୬ . Matrices A and B are global matrices with 

dimensions of ൣ10N୷ × (2Nୱୢ + 1)൧
ଶ
. The boundary conditions for 𝒒̂ଶ,௡ at the wall are 

At 𝜂 = 0:   𝑢ොଶ,௡ = 𝑣ොଶ,௡ = 𝑤ෝଶ,௡ = 𝑇෠௡ = 𝑇෠௩,௡ = 𝑌෠௦,௡ = 0 (3.15) 

The main consideration is that the frequency of the secondary cross-flow instability mode is usually 
high (of the order of 100KHz), so 𝑇̂௡, 𝑇̂௩,௡ and 𝑌̂௦,௡ are forced to vanish at the wall owing to the thermal 
inertia of the solid body [19, 24]. The Dirichlet conditions in Eq.(3.15) are also used at the far-field 
boundary because 𝒒̂ଶ,௡ quickly decays outside the boundary layer. The eigenvalues and eigenvectors 
of the large-scale matrices are solved through the same algorithm as that in LST. More details can be 
found in Koch et al. [25] and Ren & Fu [26]. 

4. Results and discussion 

4.1 Mach 20 flows past a 7 deg blunt cone 

Table 1. Free-stream conditions for the Mach 20 flow over a blunt cone 

𝑀ஶ 𝑝ஶ(𝑃𝑎) 𝑇ஶ(𝐾) 𝑈ஶ(𝑚/𝑠) Reஶ (/𝑚) 𝑌ேమ,ஶ 𝑇௪(𝐾) 

20 2549.2 221.55 5967.7 1.686 × 10଻ 0.767 1000 

The test case is based on a blunt cone with a nose radius of 3 mm and a half angle of 7o. The free-
stream conditions correspond to the altitude of 25 km, as listed in Table 1. The wall temperature of 
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1000 K is set over most of the cone surface. In the nose sphere region, however, a radiative wall-
boundary condition is employed to allow higher wall temperature due to high local heat flow. 

 

Fig. 2 Comparisons of (a) the laminar flow profile, (b) the growth rate curves with an f value of 
700 kHz, and (c) the N factor curves 

In the linear case as shown in Fig. 2, the second mode is destabilized and its frequency increases as 
the boundary layerbecomes cooler and thinner. Therefore, the maximum growth ratein the TCNE case 
is 15% higher and the peak location shifts downstream. The differences between the maximum N 
factors at thesefrequencies range from 1.5 to 2.8. As a result, the envelop of the N factors in the TCNE 
flow moves upstream in the regime from 0.13m to 0.34 m. 

Figure 3 shows the comparisons between the CPG and TCNE results of the secondary growth rates in 
the fundamental resonance. Three sets of curves are shown with different A2nd values. With the 
increasing amplitude, the TCNE effects increase both the maximum secondary growth rate and the 
corresponding azimuthal wavenumber. 

 

Fig. 3  Secondary growth rates for the CPG and TCNE cases in the fundamental resonance 
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Particularly, Figure 4 depicts the supersonic mode instabilities, as found by the present authors, in 
thermal–chemical nonequilibrium [6]. Spontaneous radiation of sound is observed in both cases 
because of the existence of the synchronization. The pressure disturbances of two cases oscillate 
outside the boundary layer at supersonic phase speed. When the disturbance returns into the subsonic 
region downstream, it decays outside the boundary layer, except for the beam of sound waves from 
upstream. 

 
Fig. 4 Instantaneous pressure disturbance of different wall temperature for the Mach 20 TCNE flow 
case. 

4.2 Mach 16 flow over a swept parabola 

The three-dimensional boundary layer over a swept wing of infinite span is considered herein. The 
swept wing is modelled by a swept parabolic body, which was widely adopted in previous investigations 
concerning cross-flow instability [7, 27, 28]. The geometry is described as 

𝑦ଶ = 2𝑟଴𝑥  and  𝑟଴ = 0.01𝑚 (4.1a, b) 

Where 𝑟଴ is the radius of curvature at the leading edge. A schematic of the geometry and computational 
domain is provided in Figure 5, where x, y and z are the Cartesian coordinates with the spanwise z 
direction along the stagnation line. The sweep angle Λ results in a non-zero spanwise velocity 𝑊ஶ =
𝑄ஶ sin Λ at zero angles of attack, where 𝑄ஶ is the free-stream velocity. In terms of stability analyses, 
a local body-fitted coordinate (s–η–z) is defined as sketched, where s denotes the streamwise direction 
along the surface with its origin at the stagnation line and η is the wall-normal coordinate. 

 

Fig. 5. Schematic of the geometry and computational domain, as well as the coordinate systems. 
Here x, y and z are the Cartesian coordinates, and s, η and z are the local body-fitted coordinates. 

 

Table 2. Flow conditions of Mach-16 flow over a swept parabola. 

𝑀𝑎ஶ Λ(𝑑𝑒𝑔. ) 𝑅𝑒ஶ(𝑚ିଵ) 𝑇ஶ(𝐾) 𝑝ஶ(𝑃𝑎) 𝑄ஶ(𝑚𝑠ିଵ) 𝑌ேమ,ஶ 𝑇௪(𝐾) 
16 45 8.404 × 10଺ 224.5 1616 4806 0.767 1500 

 

The flow conditions of the benchmark case are listed in Table 2, where the subscript ∞ denotes free-

stream values, and 𝑇௪ is the wall temperature. The free-stream conditions correspond to an altitude of 
28 km. 
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The laminar flow field is investigated first. The flow is also calculated under the CPG assumption for 
comparison to clarify the effect of TCNE. Instead of Sutherland’s law, the same air composition and 
transport models as described in § 2 are adopted for consistency. Figure 6(a) provides the laminar 
temperature contours in the TCNE and CPG benchmark cases around the nose region of the parabola. 
A noticeable difference is that the temperature in the TCNE case is much lower than that in the CPG 
case due to strong thermochemical processes downstream of the shock. The difference is most obvious 
downstream of the normal shock at y = 0, and the distributions of 𝑇ത and 𝑇ത௩ along the streamline at y 
= 0 are plotted in figure 6(b). In the CPG case, 𝑇ത slowly increases downstream until a sudden drop at 
x > -0.23 mm due to the specified low Tw. In comparison, 𝑇ത in the TCNE case quickly decreases 
downstream of the shock, and is at most 2268 K lower than that of the CPG case. As a result, the shock 
stand-off distance is 32% smaller at y = 0. The decrease of temperature in the TCNE case is 
accompanied by the rise of the vibrational energy and mass fractions of NO, O and N. Vibrational 
temperature 𝑇ത௩  rapidly increases to over 4500 K and tends to vibrational equilibrium further 
downstream towards the wall. Moreover, large fractions of NO and O are produced, as shown in figure 
6(c), and the minimum mass fractions of  𝑁ଶ and 𝑂ଶ are 0.737 and 0.114, respectively. 

 

Fig 6. (a) Laminar temperature contours around the nose region, and the streamwise distribution of 
(b) temperatures and (c) species mass fractions (TCNE only) along the streamline at y = 0 in the TCNE 
and CPG benchmark cases. 

Eq.(3.13) is used to reproduce the three-dimensional (s2–η2–z2) distribution of 𝑢෤ଶ,௦ௗ , which is 
applicable under the locally-parallel-flow assumption. Figure 7 illustrates the spatial structures 
of 𝑢෤ଶ,௦ௗ of the four modes near s = 0.90 m. The temporal sequence (t–η2–z2) of 𝑢෤ଶ,௦ௗ  at a fixed s2 

exhibits the same structures except in the opposite (-t) direction. Alternating inclined strips are 
observed for 𝑢෤ଶ,௦ௗ  of the type-I mode, which is quite similar to those documented in the low-speed 
experiments through a proper orthogonal decomposition [29]. Also, the streamwise wavelength 
(2π/αs) of the type-I mode is severaltimes larger than that of the other three modes. For the type-
II1 mode, inclined curved strips are observed on the top of the vortex. Their orientation is 
consistent with the base-flow streamlines. In comparison, the two type-IV modes exhibit aligned-
arrow and inclined-dumbbell shapes in the downwash region of the vortex. 
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Fig 7. Isosurfaces of the normalized streamwise velocity (Re(𝑢෤ଶ,௦ௗ)/ max |𝑢෤ଶ,௦ௗ| = ±0.2) for the 
modes near s = 0.9 m: (a) type-I-1, (b) type-II1, (c) type-IV-1 and (d) type-IV-2 modes. The 

black solid lines are the contours of the base streamwise velocity and the red dash-dotted lines 
the contours of |𝑢෤ଶ,௦ௗ|/ max |𝑢෤ଶ,௦ௗ| at 0.2. 

 

 

Fig 8. Streamwise distribution of the N factors for the four secondary instability modes in the 
TCNE benchmark case (a) at the frequencies related to their local maximum growth rates and (b) 

within specific frequency bands with Δf = 10 kHz 

Next, we focus on the accumulative growth (N factors) of these secondary instability modes in the 
streamwise direction to find the spatially dominant one. There are generally two approaches to 
obtain the spatial growth rate. The first is to solve the spatial-mode version of Eq.(3.13), i.e. solve 
for the complex αs at a given real ωs. The second is to use the extended Gaster transformation, 
where the temporal growth rate is transformed to a spatial one through a group velocity. 
Comparisons show that the growth rate differences of the type-I-1, type-II1 and type-IV modes 
by these two methods are less than 2 % at s = 1.0 m, so the extended Gaster transformation also 
works in this high-enthalpy flow. Nevertheless, small differences exist so the spatial-mode 
calculation is performed in the following to obtain the disturbance N factors. Figure 8 gives the N 
factor distribution of the four modes at the frequencies related to their maximum growth rates. 
The N factor envelopes within specific frequency bands are also plotted. The type-IV-2 mode is 
observed to have the largest N factor with the onset at s = 0.59 m. The N factors of the type-IV-1 
and type-II1 modes are close to each other, and the N factor of the type-I-1 mode is the lowest 
within the computational domain. In short, the present results highlight the vital role of the type-
IV modes. This is the first report, to the authors’ knowledge, wherein a secondary instability mode, 
located at the downwash region of the stationary cross-flow vortex, has the largest N factor in 
hypersonic boundary layers. 
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5. Conclusion 

In this study, we have developed a linear Parabolized Stability Equation (PSE) solver tailored for 
Thermal–Chemical Nonequilibrium (TCNE) flows. Specifically, we investigated the impact of 
TCNE on disturbance evolution and structures in Mach 20 flows around a 7-degree blunt cone, 
with a particular focus on the behavior of the supersonic mode. Our analysis revealed that the 
primary resonance governs secondary instability, with stationary structures prevailing over 
fundamental waves. Additionally, our examination of Mach 16 flows over a swept parabola 
underscored the crucial role of type-IV modes in the secondary instability region, particularly 
highlighting the significance of the type-IV-2 mode, which exhibits the highest N factor in 
hypersonic boundary layers. 

While the constraints of space preclude an exhaustive discussion, it is noteworthy that our study 
did not delve into the characteristics of attachment-line instability and the predominant modes 
downstream. Nevertheless, these findings contribute significantly to our understanding of the 
intricate dynamics of hypersonic flows under thermal–chemical nonequilibrium conditions. 
Moreover, they offer valuable insights into the factors influencing flow stability and transition 
within such environments. 
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