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Abstract  

In high-speed vehicles, the all-movable rudder structures are typically subjected to the dual effects of 
aerodynamic pressure and thermal loads. In this paper, the all-movable rudder structure with lattices 
and stiffeners is optimized using the thermo-elastic topology optimization method. The main thought 
of the design method can be summarized as follows: First, the representative lattice units of the selected 
lattices are equivalent to the virtual homogeneous materials whose effective elastic matrixes are 
achieved by the energy-based homogenization method. Meanwhile, the stiffeners are modelled using 
the solid material. Subsequently, the multi-material thermal-elastic topology optimization formulation 
is established for both the virtual homogeneous materials and solid material to minimize the structural 
compliance under mass constraint. Thus, the optimal layout of both the lattices and stiffeners could be 
simultaneously attained by the optimization procedure. Finally, the effectiveness and reliability of the 
proposed method were verified through the design of a typical all-movable rudder structure. 
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1. Theoretical statements  
1.1. Equivalent mechanical properties of the lattice unit cell  

In this paper, the energy-based homogenization method is employed to calculate the elastic matrix 
of the virtual homogeneous material. Based on homogenization theory, the average properties of the 
virtual homogeneous material are equal to the average properties of the lattice unit cell. The average 
stress and strain can be expressed as 
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the relationship between the average stress and strain can be stated as 

 H=σ εD  (2) 

 
herein, DH represents the equivalent elastic matrix. The elastic strain energy stored in the lattice unit 
cell can be expressed as: 
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From eq.1. and eq.2., the strain energy of the lattice unit cell can be can be directly calculated by 
the average strain and the equivalent elastic matrix. In finite element analysis, nine linearly independent 
                                                
1 Northwestern Polytechnical University, Xi’an China, liyang27@mail.nwpu.edu.cn 
2 Northwestern Polytechnical University, Xi’an China, gaotong@nwpu.edu.cn 
 



 HiSST: International Conference on High-Speed Vehicle Science Technology 

HiSST-2024-xxxx Page | 2 
Yang LI, Tong GAO Copyright © 2024 by author(s) 

test strain fields are applied to the lattice unit cell and the values of corresponding strain energies are 
obtained. Then, the equivalent elastic matrix can be calculated. 
1.2. Topology optimization formulation  

The thermo-elastic topology optimization problem is formulated to minimize the global compliance 
 C  or the partial compliance s CΩ  subject to constraints on mass of the stiffener structures: 
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Herein, n and m are the number of designable elements and candidate materials, respectively. For 
example, m=2 in the case of one considered lattice structure and the stiffener structure. K, U and mF  
are the global stiffness matrix, nodal displacement vector and the design-independent nodal force vector, 
respectively. In this formulation, x denotes the set of design variables and xij represents the presence 
(1) or absence (0) of the jth candidate material in the ith finite element. A lower bound for the design 
variables of xmin=10-3 is introduced in order to avoid the singularity of the structural stiffness matrix in 
the finite element analysis. V is the total volume of all designable elements and Vi is the volume of the 
ith element, iρ  denotes the density of the ith element and ( )jρ  denotes the density of the jth candidate 
material. M  is the upper bound of the mass of overall structure. qϕ  represents other optimization 
constraints that may be involved in the optimization process. 

2. Numerical example 
2.1. A typical all-movable rudder 
An all-movable rudder is designed to further verify the effectiveness and superiority of the proposed 
method. Its geometric model and dimensions is illustrated in Fig. 1(a).The finite element model of the 
all-movable rudder structure is established and illustrated in Fig. 1(b).  

  

(a) Geometric model and dimensions (b) Finite element model 

  
(c) Temperature field (d) Distribution of aerodynamic pressure 
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(e) Temperature field (f) Temperature field 

Fig 1. The all-movable rudder 
The temperature field and the aerodynamic pressure load on the rudder structure is illustrated in 

Fig. 1(c) and Fig. 1(d). The optimized configuration and the reconstructed model of the all-movable 
rudder structure with lattices and stiffeners is illustrated in Fig. 1(e) and Fig. 1(f), respectively.  
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