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Abstract 

The aerodynamic force measurement conducted within shock tunnels bear paramount technological 

significance in the field of high-temperature aerodynamics. When a force test is conducted in a shock 

tunnel, vibration of the Force Measurement System (FMS) is excited under the strong flow impact, and 

it cannot be attenuated rapidly within the extremely short test duration of milliseconds order. The 

output signal of the force balance is coupled with the aerodynamic force and the inertial vibration. This 

interference can result in inaccurate force measurements, which can negatively impact the accuracy of 

the test results. To eliminate inertial vibration interference from the output signal, proposed here is a 

dynamic calibration modelling method for a FMS based on deep learning. The signal is processed using 

an intelligent Recurrent Neural Network (RNN) model in the time domain and an intelligent 

Convolutional Neural Network (CNN) model in the frequency domain. Results processed with the 

intelligent models show that the inertial vibration characteristics of the FMS can be identified efficiently. 

After processed by the intelligent models, high-precision aerodynamic force signals are obtained. 

Furthermore, the intelligent model method is applied to force measurement with the cone calibration 

model in shock tunnels. When compared with results from the force measurement database for the 

cone model, the relative deviation is less than 2%, validating the feasibility of applying deep learning 

methods in pulse-type shock tunnel balance force tests. The deep integration of deep learning with 

pulse tunnel force tests is of paramount significance in enhancing performance metrics for hypersonic 

aerodynamics tests. This exploratory research will also further propel the intelligent development of 

force measurement in shock tunnels. 
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Nomenclature 

x – Original data 

x* – Normalized data 

RSD – Relative standard error 

RD – Relative error 

F – Value of the true force  

F* - Value of the approximate force 

A – Value of the reference load coefficient 

A* - Value of the processed coefficient by AI 

model 

Greek 

δ – relative error 

 

1. Introduction 

To reduce the risk and cost of developing a new hypersonic vehicle, it is necessary to conduct ground 

tests in a high-enthalpy shock tunnel to test its aerodynamic performance. 1-3 As one of the most basic 

and important techniques in shock-tunnel tests, force measurement is an important way to obtain the 

aerodynamic data of an aircraft, and its measurement accuracy will directly affect the evaluation of 

aerodynamic characteristics. 4 

Measuring accurately the aerodynamic forces acting on a hypersonic vehicle in a millisecond shock 
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tunnel still involves many key technical problems, the main one being the inertial vibration of the Force 

Measurement System (FMS), the main elements of which are the model, the wind-tunnel balance, and 

the supporting structure. 5-7 When a force test is carried out in a shock tunnel, disturbance of the 

complex flow field induces the inertial vibration with low frequency and high amplitude of the FMS, and 

the balance signal is mixed with the inertial vibration signals of the FMS, which makes it difficult to 

distinguish the dynamic characteristics of the aerodynamic signals directly and accurately. Therefore, it 

is very important to find a method to develop highly accurate force measurement technology for 

developing hypersonic vehicles. 

To eliminate inertial vibration interference from balance output signals, much research has been 

conducted and various special balance technologies have been proposed. Currently, there are three 

main methods for improving force measurement technology, the first involving the development of the 

new FMS, examples include the stress-wave balance, 8-12 the piezoelectric balance, 13 the magnetic 

suspension balance, 14, 15 the free flight technique, 16-19 and the pulse-type strain-gauge balance. 20-22 

However, there is a bottleneck to eliminate the influence of inertial vibration through developing a new 

FMS. The second method is to eliminate the influence of inertial vibration on the aerodynamic forces 

through signal compensation, examples being the accelerometer balance 23-26 and the inertial self-

compensation balance. 27-29 The third method involves balance signal processing, such as wave system 

fitting, 30, 31 time-frequency transform, 32 Single-Vector Dynamic self-Calibration (SVDC), 33 and the 

intelligent identification algorithm, 34. 

In summary, it is very difficult to improve the measurement accuracy by either improving the balance 

structure or using signal compensation. Instead, the deep cross application of AI in force tests has 

become a trend that has considerable engineering significance. 

Fig 1 shows the part system of the JF-12 hypersonic detonation-driven shock tunnel with long test 

duration (referred to herein as the JF-12 shock tunnel).35 The aim in this paper is to take the balance 

step signal as the input data and the ideal step signal as the target data and build an RNN time-domain 

model and a CNN frequency-domain model to learn the interference features; the intelligent models 

can identify and eliminate the interference signal and output a “pure” aerodynamic signal. The trained 

models are then ap-plied to a shock-tunnel force test to obtain aerodynamic signals without initial 

interference, thereby ensuring the accuracy of the force measurement results. 

 

Fig 1. Partial photo of JF-12 shock tunnel 

2.  AI-based balance samples acquisition 

2.1. Acquisition of balance samples in time domain 

To ensure accuracy in a force test, it is necessary to perform dynamic calibration of the balance before 

the test. The traditional dynamic signal generation methods are impulse response 36,37 and step 

response. 38 These methods have strict requirements for the load direction, so they cannot be used for 

the dynamic calibration of a shock-tunnel balance. To meet the requirement that the balance outputs 

multicomponent load signals in any direction, the SVDC technology was proposed. 39 This method 

introduces deep-learning technology that can conduct modeling and processing for dynamic calibration 

in any direction and accurately identify the aerodynamic force coupled with inertial vibration 

interference. 
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Considering the operating factors of the JF-12 shock tunnel, the same step-load acquisition device 

based on SVDC was built outside the shock tunnel, comprising the model, the balance, and the 

supporting structure. As shown in Fig 2, the model was a standard cone with a length of 0.75 m and a 

half-cone angle of 10°, the balance was a three-component pulse-type strain-gauge balance, and the 

three components were the normal force, the pitching moment, and the axial force; the model and 

balance were supported by a cantilever sting. 

 

Fig 2. Force Measurement System (FMS). 

In this paper, dynamic calibration of the whole FMS was conducted based on SVDC technology. We 

collected 120 groups of the balance signal sample, and each sample comprised two groups of data: the 

balance step signal and the ideal step signal (corresponding to the input and target data, respectively, 

in the intelligent model). We selected a sample and plotted its waveform in the time domain, as shown 

in Fig 3, where the red line corresponds to the balance step signal (used to simulate the impact 

generated by the shock-tunnel flow field) and the blue line corresponds to the ideal step signal (used 

to simulate the simplified aerodynamic force signal). The sampling rate was 50 kHz and the total time 

for a sample was 150 ms, so the number of points per sample was 7500. The signal was divided into 

two sections by the starting moment of the flow field during the force test; the zero signal before the 

step corresponds to the preparation duration before the flow field started. At approximately 55 ms, the 

signal has a step change, and the edge trigger time can be ignored. Subsequently, the balance step 

signal contains both aerodynamic force and inertial vibration, whereas the ideal step signal contains no 

vibration signal and remains stable. 

 

Fig 3. Balance sample waveform in time domain (axial force). 

2.2. Time-frequency conversion of balance samples 

The balance output signal collected during a force test is a typical unsteady and multifrequency impulse 

signal, and its waveform in the time domain reflects the aerodynamic trend directly. The frequency 

distribution of the signal can be displayed in the spectrum diagram in the frequency domain, and the 

vibration interference component can be distinguished by analyzing that diagram. 

As a common signal processing method, a Fourier transform can decompose a signal linearly from the 

time domain into the frequency domain via the triangular basis function; similarly, an inverse Fourier 

transform can map a signal linearly from the frequency domain into the time domain. The respective 

transformation equations are  

 ( ) ( )
+

-iωt

-
F ω = f t e dt



  (1) 
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+

iωt

-
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f t = F ω e dω

2



  (2) 

where ω  is frequency, ( )F   is the image function of ( )f t , and ( )f t  is the primitive function of 

( )F  .A Fast Fourier Transform (FFT) is used to convert the time-domain signal in Fig 3 into the 

frequency domain, and its spectrum diagram is shown in Fig 4. As can be seen, the main frequency of 

the balance step signal is approximately 380 Hz, whereas this frequency is absent from the ideal step 

signal, thereby indicating that the inertial vibration frequency of the FMS is approximately 380 Hz.  

 

Fig 4. Balance sample spectrum diagram in frequency domain. 

Because the time-domain signal offers a more direct reflection of the force trend, after analyzing the 

frequency-domain signal, the latter is transformed into the time domain using an Inverse FFT (IFFT). 

There may be some loss in the time-frequency conversion, but comparing the original balance signal 

with the signal after time-frequency conversion as shown in Fig 5, we can see that they basically 

coincide completely. This indicates that the loss in time-frequency conversion can be ignored completely, 

thereby providing a theoretical basis for the feasibility and reliability of data processing in the frequency 

domain. 

 

Fig 5. Verification of signal after time-frequency conversion. 

3. FMS based on RNN time-domain model 

3.1. Construction of RNN time-domain model 

Feature extraction is a very important but difficult task for a complex artificial-intelligence problem. 

Deep learning approximates complex functions by stacking multilayer nonlinear mappings, 

automatically learns hierarchical feature representations from the original data, and uses these 

combined features to solve complex problems. 40, 41 Aimed at the vibration interference signal in the 

balance signal samples, the neural-network model is built based on supervised learning in deep learning; 

the intelligent model can automatically extract the basic features of the vibration interference signal 

and combine them into more-complex features so as to identify the vibration interference signal. 

As a common type of neural network in deep learning, RNNs are used mainly to solve time-series 

problems and predict sequential data. The RNN model has the function of “memory” and the nodes 
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between each two layers are connected. 42, 43 As shown in Fig 6, the input of the hidden layer comprises 

the output of the input layer and the hidden layer at the previous moment. Because of the existence 

of a retarder, the recurrent hidden layer completes the storage and dependence by providing a path 

for information trans-mission. Therefore, an RNN can process time-sequence data effectively. 

 

Fig 6. Unit of a Recurrent Neural Network (RNN). 

To ensure consistent training samples and shock-tunnel force measurement data (test samples), the 

balance output signal is normalized before model training, and the data are mapped to a small specific 

interval. When normalizing the data, the balance output signal value is mapped to [−1,1] using the 

linear function:  

 
( )

*

max

x
x

x
=  (3) 

where x  corresponds to the original data, ( )max x  is the largest absolute value in the original data, 

and *x  corresponds to the normalized data. After the training, the inverse-normalization function  

 ( ) *maxx x x=  (4) 

is used to restore the data to the original interval. 

The number of the training samples is 120 and the number of the points per training sample is 7500. 

The output channels of the three-component balance are the normal force, the pitching moment, and 

the axial force. Therefore, the shapes of the input and output layer of the RNN time-domain model are 

( )120,7500,3 . After comparing the results of different hidden layers, we confirm that the number of 

the hidden layers is 3 and the layer parameters are shown in Table 1. 

Table 1. Layer parameters of RNN time-domain model. 

Layer Type Output shape 

Input_1 Input (120, 7500, 3) 

Bi-LSTM_2 Bidirectional LSTM (120, 7500, 128) 

Bi-LSTM_3 Bidirectional LSTM (120, 7500, 128) 

Bi-LSTM_4 Bidirectional LSTM (120, 7500, 128) 

Output_5 Output (120, 7500, 3) 

3.2. Validation and error analysis of RNN time-domain model results 

As shown in Fig 7, we select a representative validation sample and compare it with its output data 

processed by the RNN time-domain model of axial force; the red and black lines represent the input 

and target data, respectively, and the blue line represents the output signal processed by the RNN 

time-domain model. Fig 7 shows that most of the vibration signals in the input data have been 

eliminated; the blue line almost coincides with the black line, meaning that the output signal meets the 

requirements of the ideal step signal. The value of the processed data is approximately 0 before the 

signal step and remains constant thereafter, so the signal processed by the RNN time-domain model 
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achieves a steady state and most of the vibration interference signals are eliminated.  

 

Fig 7. Validation of axial force processed by RNN time-domain model. 

The normal force and pitching moment are processed in the same way, and their comparison results 

are shown in Fig 8. As can be seen, the processed results of the RNN time-domain model are relatively 

good and achieve the expected effect. 

 

Fig 8. Validation of processing by RNN time-domain model. 

Herein, we use the Mean Squared Error (MSE) as a loss function to evaluate the data processing 

capability of the intelligent models: the smaller the MSE, the better the quality of the predicted test 

data. Fig 9 shows how the loss of the RNN time-domain model changes with the training time (epoch), 

where the red and blue lines represent the training and validation losses, respectively, in the model 

training process. The model loss is approximately 
-210  initially, and with more epochs it decreases 

gradually and becomes steady. After 20000 epochs, the model validation loss has decreased to 
-53 10 , 

which is deemed sufficiently small and basically steady. This indicates that the model has converged 

and reached the standard for effective dynamic calibration, thereby verifying the feasibility of the data 

processing method of the RNN time-domain model. 

 

Fig 9. Loss of the RNN time-domain model decreases with number of epoch. 

To evaluate more intuitively the quality of the data processed by the RNN time-domain model, we use 
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the relative error and the relative standard deviation RSD to evaluate the accuracy and precision of the 

model. These are calculated as 

 
*

100%
F F

F


−
=   (5) 

 ( )
2

* *

*
1

1 1
RSD 100%

1

N

i
i

F F
NF =

= − 
−
  (6) 

We analyze the step signals in Fig 7 and Fig 8, i.e., the data in the interval of 60 – 140 ms. Here, F  is 

the mean value of the ideal step signal (used to represent the “true” force) and *F  is the mean value 

of the results processed by the RNN time-domain model (used to represent the approximate force). 

The calculation results are given in Table 2. As can be seen, the relative errors of the RNN time-domain 

model are relatively small, especially that for the axial force, which is less than 0.1%, indicating that 

the accuracy of the model is relatively high. Meanwhile, the relative standard deviations of the three 

components are also relatively small, being basically less than 1%, indicating the high precision of the 

model. The model achieves high accuracy in the overall data processing, with that of the axial force 

being obviously better than those of the normal force and pitching moment. One reason for this is that 

while acquiring balance samples, the inertial vibration characteristic of the axial force component is 

more obvious and its signal periodicity is stronger, whereas the other two components suffer greatly 

from environmental noise; another reason is that the accuracy of static calibration for the axial force is 

better than those for the normal force and pitching moment. Therefore, the subsequent analysis is 

focused on the axial force and not the other two components. 

Table 2. Relative error and relative standard deviation of RNN time-domain model. 

Component F  *F   (%) RSD (%) 

Normal force 21.955 N 21.632 N −1.47 0.582 

Pitching moment 8.694 N·m 8.674 N·m −0.229 0.561 

Axial force 13.489 N 13.482 N −0.0506 0.433 

4. FMS based on CNN frequency-domain model 

4.1. Construction and optimization of CNN frequency-domain model 

When a force measurement is conducted in a shock tunnel, the balance output signal is rather complex, 

containing the aerodynamic force, inertial vibration, and other interference signals. The aerodynamic 

force and inertial vibration of the FMS differ greatly in the frequency domain: the aerodynamic signal 

is affected by the shock-tunnel flow field and other factors, so its frequency varies with time, whereas 

the inertial vibration frequency is an inherent attribute of the system; when the mass and structure of 

the FMS are determined, the inertial vibration frequency is also determined and remains stable within 

the test duration. Therefore, the frequency-domain signal reflects the inertial vibration characteristics 

of the FMS more accurately in essence. 

As a classic neural network in deep learning, CNN models have been used widely in image recognition, 

sentence classification, data fitting, and other intelligent fields. 44 The recognition of the inertial vibration 

feature of the FMS in the frequency domain tends to be an image recognition problem, so we use a 

CNN to build a frequency-domain model for recognizing the inertial vibration feature. Fig 10 shows a 

flowchart of the CNN frequency-domain model. The input and output layer comprise the balance signal 

samples processed by FFT and the expected results processed by the model, respectively. The shapes 

of the input and output layer of the model are ( )120,2,7500,3 . The hidden layers comprise several 

convolutional and pooling layers. In deep learning, the quality of a CNN model is improved mainly by 

adjusting the number of convolutional layers and the number of epochs. 
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Fig 10. Flowchart of a Convolutional Neural Network (CNN) frequency-domain model. 

The number of convolutional layers can directly affect the training time and accuracy of the model. 

Increasing the number of convolutional layers can reduce the number of parameters when the model 

achieves the same expressiveness. Keeping the other parameters the same, we calculate the relative 

error and relative standard deviation with different numbers of convolutional layers based on Eqs. (5) 

and (6). The comparison results when the number of convolutional layers is 24, 64 and 96 are shown 

in Table 3. 

Table 3. Comparison with different numbers of convolutional layers of the CNN frequency-domain 

model. 

Convolutional layer number F (N) *F (N)  (%) RSD (%) 

24 12.745 12.735 −0.08 0.94 

64 12.745 12.530 −1.69 0.39 

96 12.745 12.475 −2.12 0.29 

According to Table 3, when the number of convolutional layers increases from 24 to 96, it can be found 

that the relative error increases gradually, while the relative standard deviation decreases obviously, 

and the training time increases obviously. Therefore, considering them comprehensively, the number 

of convolutional layers is determined to be 64. 

After determining the number of convolutional layers, the number of epochs is optimized. Increasing 

the number of epochs can improve the accuracy of the model, but the training time will increase 

significantly. The relative error and relative standard deviation with different numbers of epochs are 

shown in Table 4. 

Table 4. Comparison with different numbers of epochs of CNN frequency-domain model. 

Epoch number F (N) *F (N)  (%) RSD (%) 

10000 12.745 12.720 −0.20 2.19 

50000 12.745 12.580 −1.29 1.00 

100000 12.745 12.530 −1.69 0.39 

Table 4 shows the results processed by the CNN frequency-domain model when the number of epochs 

is 10000, 50000 and 100000 respectively. It can be seen that when the number of epochs increases, 
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the relative error increases, and the relative standard deviation decreases. Therefore, we choose the 

number of epochs as 100000. 

After the above comparison, the parameters of the CNN frequency-domain model are optimized, and 

the finally number of convolutional layers and epochs are 64 and 100000, respectively. 

4.2. Validation and error analysis of results from CNN frequency-domain model 

The optimized CNN frequency-domain model is used to process the dynamic samples. To analyze the 

model quality more intuitively, the output signal processed by the model is compared with the ideal 

step signal in the frequency and time domains as shown in Fig 11, where the blue line represents the 

output signal processed by the model. As can be seen, in the frequency domain, the inertial vibration 

interference of 380 Hz in the input data is eliminated completely, and in the time domain, the output 

signal obviously meets the requirement of the ideal step signal. 

 

Fig 11. Validation of axial force processed by CNN frequency-domain model. 

Similar to those with the RNN time-domain model, we calculate the relative error and relative standard 

deviation of the CNN frequency-domain model, as given in Table 5. The mean of the output data 

processed by the model is close to that of the ideal step signal, and its relative error is approximately 

2%, which verifies that the accuracy is high and the model is reliable. Also, the relative standard 

deviation is only 0.39%, indicating that the output data are very steady during this period. Therefore, 

the CNN frequency-domain model has high accuracy and precision and is very reliable for data 

processing. 

Table 5. Relative error and relative standard deviation of CNN frequency-domain model. 

Component F (N) *F (N)  (%) RSD (%) 

Axial force 12.745 12.530 −1.69 0.39 

5. Application of intelligent model methods of force measurements from JF-12 
shock tunnel 

The validation and analysis of the RNN time-domain and CNN frequency-domain models show that they 

dealt very well with the inertial vibration interference signals in the training samples, so now we apply 

these two intelligent models to dynamic calibration of the FMS in a shock tunnel. In order to verify the 

reliability of the modeling method, a force measurement experiment was carried out in JF -12 shock 

tunnel. The experimental model is a standard cone, with a half-cone angle of and a length of 0.75 m 

(HSCM-2). 45 Fig 12 shows the force measurement experiment in JF-12 shock tunnel. 
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Fig 12. Validation of axial force processed by CNN frequency-domain model. Force test in JF-12 shock 

tunnel. 

After the force measurement experiment, the output signals of balance were reprocessed by the RNN 

time-domain and CNN frequency-domain models, and the results are shown in Fig 13. As can be seen, 

the inertial vibration of 380 Hz is eliminated in the frequency domain, and the output signal processed 

by the models is mostly free of vibration interference. Compared with the time waveform processed by 

the RNN time-domain model, that processed by the CNN frequency-domain model is steadier. The 

results for the validation sample in Fig 11 are better than those for the test sample in Fig 13, the main 

reason being that the test signal is more complex and the real aerodynamic signal is not absolutely 

steady; there is still a certain amount of deviation between the processed signal and the ideal step 

signal. 

 

Fig 13. Comparison of axial force processed by RNN time-domain and CNN frequency-domain 

models. 

Similar to the data processing method for the training samples, we calculate the relative deviation RD 

and the relative standard deviation for the RNN time-domain and CNN frequency-domain models. The 

results in Table 6 show that after the force measurement signal is processed by these two intelligent 

models. When compared with results from the force measurement database for the cone model, the 

relative deviation is less than 2 %, validating the feasibility of applying deep learning methods in pulse-

type shock tunnel balance force tests. The current method has high accuracy in processing the shock-

tunnel balance signal and can recognize the inertial vibration features of the FMS effectively. Deep-

learning modeling based on an RNN in the time domain and a CNN in the frequency domain has high 

application value in processing dynamic force measurement signals from shock tunnels, and we will 

continue to carry out more in-depth research on the cross-application of deep-learning technology in 

dynamic signal analysis. The next step in model training will be to increase the numerical number of 
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samples. Meanwhile, in the process of sample acquisition, the environmental noise can be eliminated 

properly to ensure consistency between training and test samples to improve the model qua lity. 

Table 6. Comparison of RNN time-domain and CNN frequency-domain models (axial component). 

Model A  *A  RD (%) RSD(%) 

RNN 0.1026 0.1031 0.49 16.49 

CNN 0.1026 0.1012 −1.36 6.56 

6. Conclusions 

(1) According to different characteristics of the balance signal in the time domain and the 

frequency domain, the corresponding intelligent models were proposed. An intelligent RNN 

model in the time domain and an intelligent CNN model in the frequency domain were trained 

to process the balance signal, and the results show that the two intelligent models recognized 

the inertial vibration characteristics of the FMS effectively. 

(2) The aerodynamic signals processed by the models were steady. When compared with results 

from the force measurement database for the cone model, the relative deviation is less than 

2 %, validating the feasibility of applying deep learning methods in pulse-type shock tunnel 

balance force tests. 

(3) The proposed modeling method is universal in force tests in shock tunnel. The RNN model 

and CNN model can be used to process the complex characteristics in the time domain and 

the frequency domain, respectively. The present modeling method based on deep learning is 

feasible for shock-tunnel force tests and has great engineering value. Exploring new data 

processing techniques with different neural-network models could provide more reliable data 

for research in hypersonic vehicles. 
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