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Abstract (Tahoma 11 pt, bold) 

In hypersonic computational fluid dynamics studies, using a two-temperature model to simulate 
thermochemical non-equilibrium states is common. The two-temperature model assumes translational-
rotational, electron-electronic-vibrational temperatures and includes the assumption that each energy 
has an equal temperature. In this study, the temperature of each energy mode was separated and the 
effects were analyzed. The three-temperature model uses translational-rotational, vibrational, and 
electron-electronic temperatures by independently calculating the electron-electronic temperature from 
the two-temperature model. The four-temperature model calculated the rotational temperature 
independently. To accurately calculate the electron-electronic temperature, not only the Lee model but 
also the Laporta model was used to model the e-V relaxation time of 𝑁𝑁2,𝑂𝑂2,𝑁𝑁𝑂𝑂. The validation of the 
multi-temperature model solver was performed by comparing the heat flux of ELECTRE, LENS-XX 
experiments, and the electron number density of RAM-C. The effect of the multi-temperature model is 
most pronounced in the wake region, where the flow expands and affects the formation of ions and 
electrons. 

Keywords: Hypersonic, Non-Equilibrium, Computational Fluid Dynamics, Electron-Electronic 
Temperature, Electron Number Density 

Nomenclature

𝜌𝜌 – density 
𝑢𝑢, 𝑣𝑣 – velocity components in the x and y 
directions 
𝑒𝑒 – internal energy 
𝑝𝑝 – pressure 
ℎ – total enthalpy 
𝜏𝜏 – shear stress 
𝑞𝑞 – conduction term 
�̇�𝜔 – species production rate 
𝑆𝑆 – nonequilibrium source 

𝐽𝐽 – diffusion velocity 
Superscripts 
𝑥𝑥,𝑦𝑦 – x, y coordinates component 
Subscripts 
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 – Translational 
𝑡𝑡𝑟𝑟𝑡𝑡 – Rotational 
𝑣𝑣𝑣𝑣𝑣𝑣 – Vibrational 
𝑒𝑒𝑒𝑒 – Electron-Electronic 
𝑡𝑡 – species 𝑡𝑡 

1. Introduction 
The hypersonic aerothermodynamic field is focused on 2-T models. Simulation of real gas effect using 
2-T models of air has been widely studied in the past. Recently, new TPS models utilizing electrons [1] 
have been developed to accurately capture the blackout phenomenon during reentry to Earth. For these 
studies utilizing electrons, it is important to accurately capture the electron number density, so it is 
necessary to consider each energy mode individually to see how it affects the heat transfer of the gas 
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and the flow field around the gas, which is incorporated as an assumption of the traditional two-
temperature model. Recently, studies related to rotational relaxation time [2] and e-V energy exchange 
[3, 4] have been conducted. In this study, by applying the latest models, a more accurate multi-
temperature model was constructed and the effects of each temperature model were analyzed. 

2. Methodology 
The governing equations of the 4-T, 3-T, and 2-T models used in the multi-temperature model are 
shown below. The 4-T model separates the translational, rotational, vibrational, and electron-electronic 
energies and considers all energy transitions between each energy to obtain the temperature. The 3-T 
model ignores the energy transition between translational and rotational energy, assuming that the 
translational and rotational temperatures have the same temperature. The 2-T model ignored energy 
transitions between vibrational and electron-electronic energy, including the assumption that the 
vibrational temperature is the same as the electron-electronic temperature in the assumptions of the 
3-T model. The energy transitions between each energy in the 4-T, 3-T, and 2-T models are 
summarized in Fig 1. The governing equations of the multi-temperature model are summarized in 
Sections 2.1, 2.2, and 2.3. 

 

 
Fig 1. Considered Energy Relaxation Terms of Energy Modes 
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2.2. 3-Temperature Model 
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2.3. 2-Temperature Model 
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The governing equations for 2-T and 3-T can be found by adding the rows of the governing equation 
of 4-T. The source term in the 4-T basis is constructed as follows. In Eq. (4), (5) and (6), the source 
terms added compared to 2-T are S_{trans-rot}, 𝑆𝑆𝑒𝑒−𝑣𝑣𝑣𝑣𝑣𝑣. The 𝑆𝑆𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠−𝑟𝑟𝑟𝑟𝑟𝑟 term uses the relaxation model 
of Jo [2], and the 𝑆𝑆𝑒𝑒−𝑣𝑣𝑣𝑣𝑣𝑣 term uses the model of Lee [5] for 𝑁𝑁2 and Laporta [3,4] for 𝑂𝑂2,𝑁𝑁𝑂𝑂. 
 

𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑆𝑆𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠−𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟−𝑒𝑒 + 𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣−𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑆𝑆𝐶𝐶ℎ𝑒𝑒𝑒𝑒−𝑟𝑟𝑟𝑟𝑟𝑟 (4) 
𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣 = 𝑆𝑆𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠−𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣−𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑆𝑆𝑒𝑒−𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑆𝑆𝐶𝐶ℎ𝑒𝑒𝑒𝑒−𝑣𝑣𝑣𝑣𝑣𝑣 (5) 
𝑆𝑆𝑒𝑒𝑒𝑒 = 𝑆𝑆𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠−𝑒𝑒 + 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟−𝑒𝑒 − 𝑆𝑆𝑒𝑒−𝑣𝑣𝑣𝑣𝑣𝑣 + 𝑆𝑆𝐶𝐶ℎ𝑒𝑒𝑒𝑒−𝑒𝑒𝑒𝑒   (6) 

3. Results 
RAM-C II [6] is a 1.3m long sphere-cone consisting of a 0.152m diameter sphere and a 9° cone. The 
RAM-C II experiment was conducted to measure the electron number density around a hypersonic 
vehicle during reentry. This study analyzes the 71 km altitude conditions of RAM-C II. The 71 km 
altitude is the condition where the reflectometer measurements are most similar to the actual values. 

The result of the 4-T, 3-T, and 2-T models at 71km altitude is shown in Fig 2. Fig 2 shows the maximum 
electron number density in the direction normal to the wall, which confirms the small discrepancy with 
the experimental results. Compared to the 2-T and 3-T models, the 4-T model shows a slightly lower 
electron number density, which seems to be caused by an increase in the shock standoff distance due 
to the effect of rotational relaxation during shock wave formation. 

The experimental data from the electrostatic probe for the rear of the gas and the predictions from the 
multi-temperature model are compared in Fig. 3. All models predicted the electron number density 
within the error. The electron temperature in the wake region is shown in Fig. 4. The difference between 
2-T and 4-T was largest in the recirculation region where the separation occurred, and equilibrium was 
reached further downstream. To see the difference between the multi-temperature models, the electron 
number density was compared with the temperature of the same streamline. The comparison of 
temperature and electron number density for the multi-temperature models is shown in Fig. 5. The 
most significant differences are seen in 3-T and 4-T, where electron-electronic nonequilibrium is 
considered. This shows the need for electron-electronic nonequilibrium for accurate electron-electronic 
temperature prediction due to the relatively long relaxation time characteristic of the electron-electronic 
temperature, unlike the vibrational temperature, which quickly reaches equilibrium with the 
translational temperature.   

 

  
Fig 2. Comparison of maximum electron number density perpendicular to the wall of the RAM-C II 

flight test condition 71 km with experimental data and other studies 
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Fig 3. Comparison of electron number density at the electrostatic probe of multi-T models with 

experimental data from the RAM-C II flight test 71 km 
 

 
Fig 4. Comparison of electron temperature distribution of 2-T and 4-T in wake region at 71km 

altitude of RAM-C II flight test condition 
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Fig 5. Comparison of temperature and electron number density along streamline in wake region at 

61km altitude of RAM-C II flight test condition 
 
ELECTRE [5] is a 2m long sphere-cone with a 0.175m diameter sphere and a cone with 4.6°. ELECTRE 
has published flight test data, allowing for a direct comparison of heat transfer. As shown in Fig 6, the 
analysis of each multi-temperature model shows that the difference between the 2-T and 3-T models 
is very small, but the 4-T model shows a slight decrease in heatflux. 
The stagnation line temperature distributions at 293 s for the multi-temperature models are compared 
in Fig. 7. Compared to the previous RAM-C II case, the nonequilibrium regions of 𝑇𝑇𝑣𝑣𝑣𝑣𝑣𝑣 and 𝑇𝑇𝑒𝑒𝑒𝑒 increased 
significantly, but 𝑇𝑇𝑟𝑟𝑟𝑟𝑡𝑡𝑡𝑡𝑠𝑠 and 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 reached equilibrium quickly. The flight condition of ELECTRE is a low-
altitude, low-enthalpy condition compared to RAM-C II, and the maximum electron number density in 
the stagnation line is reduced by two orders of magnitude. Therefore, the effect of rotational 
nonequilibrium is greatly reduced, and the 𝑒𝑒 − 𝑣𝑣𝑣𝑣𝑣𝑣  relaxation transfer is also reduced due to the 
reduction of electron production rate. 

 
Fig 6. Heat Flux Comparison of Multi-Temperature Models of ELECTRE 293s condition 
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Fig 7. Comparison of temperatures along stagnation line of ELECTRE 

 

For the LENS-XX experiment [7], the analysis was performed for 2-T, 3-T, and 4-T models. The results 
of the LENS-XX analysis for multi-temperature model showed similar to the previous analysis. 
The heat flux of the hemisphere and cylinder and the temperature distribution of the stagnation line 
are compared in Fig. 7 and 8. Similar to the previous case, we can see that the differences between 
the multi-temperature models are negligible. The same trend is observed for the differences between 
3-T and 4-T compared to 2-T of the stagnation line. 
 

 
Fig 8. Comparison of surface heat flux and temperatures distribution along stagnation line of LESN-

XX Hemisphere Run 68 
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Fig 9. Comparison of surface heat flux and temperatures distribution along stagnation line of LESN-

XX Cylinder Run 74 
 

4. Conclusions 
In this study, the numerical simulation results of 4-T, 3-T, and 2-T models were compared with the 
experimental results of RAM-C II, ELECTRE and LENS-XX to analyze the effect of the multi-temperature 
model in hypersonic flow. The 2-T and 3-T models showed less difference in the wall heatflux and the 
electron number density in the flow compression region. However, in the wake region, the 3-T and 4-
T model predicted a higher electron-electronic temperature than the 2-T model due to the relatively 
long 𝑒𝑒 − 𝑣𝑣𝑣𝑣𝑣𝑣 relaxation time. The 4-T model tends to over-predict electron number density in wake 
region. 
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