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Abstract 

A conjugate heat transfer analysis was conducted for the High-speed vehicle inlet. We examined the 

internal flow and the structure temperature variations over time. In the time frame of less than 10 
seconds, noticeable differences in the internal flow were observed along with rapid heat conduction. 

However, after 10 seconds, apart from the solid temperature on the upper wall, there were no 
noticeable differences in the internal flow patterns. In the constant wall temperature condition, the 

solid domains temperature increased similarly to the adiabatic condition, but the wall temperature was 

not heated above a certain level. 
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Nomenclature 

Q – Conservative variable vector 

F, Q – Convective flux vector 

Fv, Qv – Viscous flux vector 
Fs, Qs – Flux vector for solid 

 

Greek 
θ – Nondimensionalized temperature 

Subscripts 

i – Initial 

∞ – Freestream 

1. Introduction 

High-speed vehicle performs powered flight for tens to hundreds of seconds. As an example for a high-

speed airplane, the operating conditions of the HyShot model for ground test were set to a flight Mach 
number of 5-6 at an altitude of 20 km. Previous studies using DES to analyze combustion set the Mach 

number of the inlet flow to 3 and the temperature to 600 K. A complex temperature field ranging from 
200 K to 3,000 K is distributed before and after the injector [1-4]. Another high-speed vehicle geometry 

uses air-throttling of the expansion part to block the flow at subsonic speeds to ignition. A few 

milliseconds later, the fuel and air mix and ignition occurs, creating a temperature field of up to 2,000 
K [5-7]. A number of previous studies presented the high temperature flow field inside the scramjet 

combustor [8-14]. 
To create a high–speed environment on the ground test, a test vehicle directly connected to vitiated 

air heater(VAH) or a high–speed wind tunnel is used. When testing in a VAH, the aircraft structure is 

heated to a high temperature as a high enthalpy flow is supplied, and when testing in a high–speed 
wind tunnel, the internal and external surfaces are also heated by the high–speed wind tunnel flow.[15-

19] There is a risk that such a heated structure will change the internal flow field of the aircraft, resulting 
in performance that is different from the initial design point. Therefore, in this study, a conjugate heat 

transfer analysis was conducted to investigate of temperature variations over time on the various 
boundary conditions. 
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2. Numerical Methodology 

2.1. Governing Equation 

In the present study RPL2D, in-house code is used, which has been developed at the Rocket Propulsion 

Laboratory of Pusan National University and used for the validation and application problems for a long 
time [20-36]. This program involves solving a set of governing equations that encompass species 

conservation, the Navier–Stokes equation, and energy conservation. The turbulence model is Menter’s 

two–equation k–ω SST model [37]. The turbulence model has been studied for scramjet flow field with 
various conditions [38-43].The governing equations are structured in a conservative vector form and 

discretized using the finite–volume method. 
In the fluid simulation, the convective flux term in the governing equations is discretized using the 

RoeM scheme, which is combined with the MUSCL scheme to achieve high–order spatial accuracy. To 

preserve the Total Variation Diminishing (TVD) property, the β–minmod limiter [44] is employed. For 
the viscous flux term, a second–order accurate central difference scheme is utilized. The time 

integration is carried out using LU–SGS [45]. Further details of the mathematical modeling and 
numerical methods are described in the literatures [1-43]. 
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For CHT analysis, RPL2D is modified. A dimensionless energy equation is incorporated into the RPL2D. 

The spatial term of this energy equation is discretized using a second–order central difference scheme, 
while the time term is discretized using a first–order forward difference scheme. 

We selected loosely coupled strategy because of the short time scale. The surface temperature of the 

solid domain is provided to the fluid domain as a Dirichlet boundary condition. Once the fluid domain 
calculations are completed, the wall heat flux is then transferred to the solid domain as a Neumann 

boundary condition. This iterative process continues until the desired time is reached. The validation of 
the CHT solver is carried out through a cylindrical leading–edge model that underwent testing in the 

NASA Langley 8 ft wind tunnel [46-47]. More details about the CHT solver are described in the previous 
study [48]. 
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2.2. Numerical domains and boundary conditions 

The adiabatic assumption is applied to the lip tip and double wedge due to the tip being subjected to 

stagnation temperature and subsystems like batteries being mounted on the wedges. Therefore, the 

insulated area grids for the solid walls are excluded from the simulation. Thickness of the solid wall is 
approximately 7.5 mm. We assumed that the vehicle is made by Inconel 625. The physical and thermal 

properties are shown in Table 1. 
The High-speed vehicle engine inlet operates at Mach 6.4, Reynold’s number 1.7×107. In Figure 1, fluid 

domains have the left side set as the inflow boundary condition, the right side as the outflow boundary 

condition, and the bottom side as the far–field boundary condition. Except that, all the surface is set as 
the no–slip wall boundary condition. Constant temperature was given to the external walls and the 

results for different temperature conditions were compared. For the adiabatic condition, the interior 
walls were given an insulated condition, assuming that the walls of the flow path are covered with 
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insulation. We refer to the insulation condition as Adiabatic and the constant temperature wall as CnsT 

(set temperature) K. The number of the total grid point is 118,235. The initial temperature of solid 
domains is 300 K. 

 

Table 1. Physical and thermal properties of Inconel 625 

Physical and thermal properties Values 

Mass density, kg/m3 8,440 

Specific heat capacity, J/kg·K 410 

Thermal conductivity, W/m·K 9.8 

 

 

Fig 1. Computational domains and grid for CHT analysis (times 1/5) 

 

3. Results 

Figures 2 to 4 show the temperature contours for the adiabatic, constant wall temperature 150 K, and 

300 K conditions. Under adiabatic conditions, the temperature of the flow field converged within 2 
seconds. The interaction of the oblique shock with the boundary layer at x/H=35 and the change in the 

intensity of the oblique shock after x/H=43 were observed. The high temperature of the internal flow 
is not transferred to the structure by the insulated internal walls. As a result of the adiabatic conditions, 

it is unlikely that there will be any significant internal flow changes during the tens to hundreds of 

seconds of operation. 
On the other hand, when the external wall temperature was given as a constant temperature, the 

internal flow field was visibly changing for tens of seconds. This change in flow field occurred faster 
than the temperature changes in the structure. For the structure, a sharp increase in solid temperature 

was observed at the cowl lip and corners. And it was also observed beyond the point of interaction with 

the reflected oblique shock from the cowl lip. This heating is caused by the increased stagnation 
temperature of the decelerated flow passing through the oblique shock. After 20 seconds, apart from 

the solid temperature on the upper wall, there were no noticeable differences in the internal flow 
patterns. The wall temperature was not heated above a certain level. 

Figures 5-8 shows a graph of the temperature distribution of the near-wall flow at a specific moment. 
For the adiabatic condition, the temperature of the near-wall flow remains constant at all times without 

heat transfer. On the other hand, for CnsT 150 K to 300 K, the temperature gradually increases and 

converges to a similar temperature at 30 seconds. Although the temperature of each condition differs 
by 50 K, the physical properties and thickness of the structure are the same, so the temperature 

difference between each condition remains relatively even over time. 
Density distribution graphs are shown in Figures 9-10 and pressure distribution graphs are shown in 

Figures 11-12 for 1 and 10 seconds of rapid temperature change. At 1 second, the density decreased 

by up to 7 times as the flow field near the wall heated up. At 10 seconds, the difference in density 
between the conditions decreased rapidly. The same trend was found for pressure, meaning that the 

magnitude of the density can still change during the time the structure is heated. It is important to 
note that density differences can also lead to differences in shock wave structure. 

For CHTCT 150 K, which has the largest temperature gradient, the separation bubbles occurred at the 
front. This is due to the steepness of the boundary layer profile near the wall due to the low wall 

temperature, which caused the boundary layer to thicken. The thickening of the boundary layer pulls 

the location of the boundary layer-shock wave interaction forward. These differences can accumulate 
along the flow direction.  
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Fig 2. Temperature contour of the domains on the adiabatic wall condition 

 

 

Fig 3. Temperature contour of the domains on the 150 K constant wall temperature condition 

 

 

Fig 4. Temperature contour of the domains on the 300 K constant wall temperature condition 
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Fig 5. Temperature distribution with various conditions at 1 s (Left: top wall, Right: bottom wall) 

 

Fig 6. Temperature distribution with various conditions at 10 s (Left: top wall, Right: bottom wall) 

 

Fig 7. Temperature distribution with various conditions at 20 s (Left: top wall, Right: bottom wall) 

 

Fig 8. Temperature distribution with various conditions at 30 s (Left: top wall, Right: bottom wall) 
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Fig 9. Density distribution with various conditions at 1 s (Left: top wall, Right: bottom wall) 

 

Fig 10. Density distribution with various conditions at 10 s (Left: top wall, Right: bottom wall) 

 

Fig 11. Pressure distribution with various conditions at 1 s (Left: top wall, Right: bottom wall) 

 

Fig 12. Pressure distribution with various conditions at 10 s (Left: top wall, Right: bottom wall) 
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4. Conclusion 

A two dimensional CHT analysis was conducted to examine the internal flow field of the High-speed 
vehicle engine inlet. The temperature variations of the solid and fluid domains over time were observed, 

and the changes in the flow field due to boundary conditions were investigated. 
Comparing the adiabatic wall boundary condition with the constant wall temperature conditions shows 

that the temperature of the structure affects the internal flow field. A low-temperature structure will 

transfer heat from a high-temperature fluid and heat up, which has the effect of cooling the fluid. 
Therefore, the temperature change in the fluid can persist before the temperature change in the 

structure converges. Changes in temperature lead to changes in density and pressure, which can also 
affect the oblique shock wave structure of the internal flow field and the location of the shock-boundary 

layer interaction(SBLI). 

Test models that are directly connected to a VAH have their external walls exposed to the atmosphere, 
allowing the internal flow field to change over relatively long periods of time. On the other hand, a test 

model fully immersed in a high-speed wind tunnel has its external walls exposed to high-speed flow, 
so the internal flow field can converge in a relatively short period of time. When performing ground 

tests of a vehicle with a planned long flight profile, it is necessary to consider changes in the internal 
flow field due to heating of the structure. 
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