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Abstract

One of the main challenges which must be hurdled in the dual mode ramjet/scramjet engines’ design pro-

cess, is to obtain an optimal fuel-air mixing distribution and a good penetration. One way is to enhance

the mixing efficiency is to inject the fuel via multiple struts in parallel direction and make the fuel be mixed

with air throughout the shock-expansion waves structure. Mixing intensity is augmented by the turbu-

lence level highly depends on the strut geometrical parameters, however, this enhancement in themixing

can bring about several detrimental effects on the aerodynamic features of the propulsion system such

as increasing the losses on total pressure. Therefore, optimizing configurations of the fuel struts and

resolving the interaction between the design variables are obligatory in order to yield best overall engine

performance. The present study focuses on the investigation of the strut design parameters impacts on

the fuel-air mixing and aerodynamic properties particularly efficiency, length and total pressure recovery

factor. We solved compressible non-reactive RANS filtered governing equations on the 2D flow domain

of a dual mode ramjet engine (operating in scramjet mode) combustor. Exploring the design space of

the fuel struts in terms of mixing and total pressure losses, requires plenty of simulations and an infor-

mative dataset. Performing the simulations in every single design point is computationally prohibitively

expensive. Machine learning techniques thus can be a key solution for multi-objective optimization of

design variables, making the predictions by utilizing a database having a number of observations and

generating reduced-order models that can be used in the preliminary design exercises. In present work,

we created a CFD database having 100 observation points with three varying design variables: strut lo-

cation, strut wedge angle and strut V-settlement angle. We applied Artificial neural network regression

model to this database in order to formulate the mixing efficiency of multi-strut injection scramjet engine.

We discuss the deep learning model prediction accuracy by computing coefficient of determination, R2

and drawing the parity plots for each objective function. In our findings in the investigation of the flow

physics, the wedge angle is the dictating parameter for the shock-expansion wave structure in the post

strut region and accordingly the mixing and aerodynamic performance of the engine.

Keywords: high-speed propulsion, hydrogen fueled engine, multi-strut injection, machine learning,

mixing efficiency, total pressure recovery factor

1. Introduction
Dual mode ramjet (DMR) engines are considered as the power unit of hypersonic air transportation sys-

tems in near future. It has many advantages such as no need for carrying on-board oxidizer or any

rotating component in the propulsive path, however, the flow along the duct is quite complex and needs
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to be modelled carefully in the consideration of the challenges in modeling of fuel-air mixing, ignition,

thermal choking phenomena and so on [1]. The designing the mixing process has huge importance in

terms of not only non-premixed combustion efficiency in the scramjet, but also, overall system perfor-

mance influencing net thrust and aerodynamic internal losses [2]. Researchers and scramjet designers

have focused on inventing a way to provide optimal fuel-air mixing distribution and augment the mixing

efficiency without sacrifing aerodynamic effectiveness [3, 4]. Among those methods, injecting the fuel

into the high-speed air stream in parallel and generating a penetration zone throughout shock-expansion

waves structure behind fuel struts can promise an effective solution [5]. The strut design parameters

become significant in this sense since they orient the wave structure in the reactive zone and form the

mixing and accordingly the burning processes. In this regards, there are many efforts in literature which

were devoted to investigate the design parameters of the injection. Sujith et al. performed experimental

and numerical studies to examine the effect of trailing ramp angle on supersonic mixing efficiency with

various angles and two configurations [6]. In their findings, the highest total pressure loss was seen in

the sample demonstrated best mixing performance. It was noted that vorticity generated by the struts in-

fluenced the mixing positively nevertheless caused a remarkable loss in the total pressure term. Manna

et al. investigated different fuel injection strut arrangements with various combustor inlet flow conditions

in order to observe their effects on combustion efficiency, engine thrust, heat release and total pressure

loss [7]. The authors concluded that incurred drag losses due to the injectors significantly affect the

thrust more than combustion and mixing efficiencies. Choubey and Pandey run numerical simulations

on the scramjet test facility of DLR to compare two different strut configurations with the different angles

of attack (AoA) of fuel injectors in terms of aforementioned performance parameters [8]. They found

that multi strut configurations had a beneficial impact on performance parameters while the maximum

combustion efficiency and smallest ignition time were provided when injector’s AoA was set as zero.

On the other hand, flight conditions i.e. flow variables of the incoming air have important effects on the

engine performance as well as the strut geometries and configurations. Reddy and Venkatasubbaiah

performed numerical studies on the same case with Choubey and Pandey, and found also that multi

strut injector arrangement provides better performance than single strut [9]. They also conducted con-

ducted the numerical analysis with different flight conditions and noted that increasing of total pressure

and temperature with the flight speed led the combustion efficiency to rise. Huang and Yan investi-

gated ram - scram transition mechanism in a strut-based dual-mode scramjet combustor by performing

numerical simulations at cruise speeds between Mach 4 and 7 [10]. They showed that inlet boundary

conditions higher freestream Mach number is more favorable for the fuel - air mixing process. However,

they also noted that the mixing efficiency did not vary after the freestream Mach number exceeds a

certain threshold.

Reduced-order models (ROM) i.e., the models based on zero-and-one dimensional approaches are

commonly preferred to asses the performance of the dual-mode ramjet engines [11, 12, 13]. They are

considered as cost-effective solutions for instance in performance estimation and feasibility analysis, and

also inseparable parts of the conceptual design works. To improve the accuracy of the performance as-

sessment studies of the high-speed air-breathing engines, surrogate assisted evolutionary algorithms

and reduced order modelling techniques are widely utilized in reactive and non-reactive flow applica-

tions [14, 15, 16, 17]. We consider that these approaches and coupling with fuel-air mixing supersonic

numerical dataset could enable us to explore the entire design space of the scramjet engine and create

machine learning models which are functions of strut geometric design parameters and represent well

the fuel-air mixing phenomena.

In the present article, we solved 2D RANS filtered compressible flow equations on a dual-mode ramjet

engine combustor domain to investigate the fuel-air mixing phenomena comprehensively as a function of

strut configurations. We computed the mixing efficiency at several stations and total pressure recovery

factor to discuss the struts’ geometrical impacts on the mixing and aerodynamic features of the combus-

tor component. We generated a CFD database including the the mixing efficiencies and total pressure

recovery factor at 100 observation points and it enabled us to conduct a thoroughgoing discussion on

the fuel-air mixing phenomena in the multi-strut injection scramjet engine. We also coupled the dataset

with Artificial neural network to create a machine learning model for making the prediction in unexplored
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points by the CFD. The model is basically a sort of reduced-order model representing the fuel-air mixing

features in the multi-strut scramjet engine as a function of strut configuration parameters.

2. Methodology

2.1. Engine specifications and numerical model:

The numerical investigations were done on a 8.4 meter length DMR combustor in which the fuel is

injected into the high-speed air stream via 23 fuel struts and 1248 injectors. The fuel struts are V-shaped

and have an angle of 52.30 with the center axis, the top and bottom wedge angles of them are 1680.

The incoming air flow and engine geometry data were provided by Italian Aerospace Research Center

(CIRA) [18]. The air flow enters the combustor with 33.7kPa static pressure, 871K static temperature and

speed of Mach 3.4 in average. These inflow conditions are representative of the DMR engine operating

at 33km altitude with the cruise speed of Mach 8. The total pressure and temperature of fuel at the

injectors is given as 73.4bar and 610K, respectively, and the equivalence ratio is defined as 0.65.

The 2D compressible and non-reactive Reynolds averaged Navier-Stokes equations (Eqs. 1 - 3) cou-

pled with species transport (eq. 4) and k - ω SST turbulence equations, were solved by Ansys Fluent,

commercial CFD code for the flow in the multi-strut injection DMR engine combustor under investigation.

in the governing equations set, ρ is the density, ~v is the velocity, E is the total energy, P is the pressure,

keff is the effective thermal conductivity, hi is the enthalpy of species i, τ is the viscous stress tensor,

Yi is the mass fraction of species i. Since the oxidation of hydrogen with air is out of scope of this work,

reactive and source terms are not involved into the governing equations. k - ω turbulence model was

noted as very effective predictor to resolve the interaction between shock - expansion waves and mixing

layer [14, 19]. Compressible real gas Navier-Stokes/Euler equation set which is highly recommended

for density variations, multi-species flows and flows in which the global Mach number is generally higher

than about 0.2 [20]. The mass diffusive flux ( ~Ji) for i
th specie (H2, N2 and O2) is solved by eq. (5) with

Schmidt number (Sct), mass (Di,m) and thermal (DT,i) diffusivities. In the present work, we assume

Lewis number Le = 1 and Schmidt number Sc = 0.7. The thermal diffusivity was computed by Soret

equation [21]. The boundary conditions of the simulations of the multi-strut injection scramjet engine are

shown in Fig. 1 and Table 1. The inlet boundary conditions were defined as nonuniform and the values

were interpolated from the 3D CFD simulations [18].

∇ · (ρ~v) = 0 (1)

∇ · (ρ~v~v) = −∇P +∇ · τ (2)

∇ · (~v(ρE + P )) = ∇ ·
(
keff∇T −

∑
i

hi
~Ji
)
+∇ · (τ · ~v) (3)

∇ · (ρYi~v) = −∇ · ~Ji (4)

~Ji =
(
ρDi,m +

νt
Sct

)
∇Yi −DT,i

∇T

T
(5)

2.2. Design variables and objective functions:

Fuel-air mixing phenomena in a multi-strut injection DMR engine was explored with three design vari-

ables; struts location, φ1, and struts settlement angle, φ2, and strut wedge angle, φ3, as drawn in the top

view of the combustor scheme (fig. 2a). The fuel-air mixing process is strongly influenced by the shock-

expansion waves structure as mentioned above. The fuel stream injected by one strut into high-speed

air flow is oriented by the wave structure created by the entire struts set. Hence, the idea behind the

selection of these strut parameters is to observe how each strut configuration parameter causes signifi-

cant alteration on the formation of the wave structure and accordingly how it affects the mixing process
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Fig 1. The boundary conditions of the scramjet engine studied in the present paper.

Table 1. The boundary conditions defined for the simulations of multi-strut injection scramjet engine as

shown in Fig. 1.

Station Zone name Boundary condition Details

1 Air-inlet Pressure far field
Mach = 3.4, T = 871K,

P = 31kPa (average)

2 Wall Adiabatic wall -

3 Center-axis/symmetrical plane Symmetrical -

4 Outlet Pressure outlet -

5 Fuel inlet Mass flow inlet

ER = 0.65, T0 = 612K,

P = 2.02bar for upside,
and P = 2.14bar

for downside injectors

and aerodynamic features in terms of the losses on the total pressure recovery factor. Examination of

these parameters is also important to determine the engine design limits and performance linking to

supersonic fuel-air mixing and combustion physics. The range of these design variables are given as

[0 - 10] x 600mm, 32.3o - 62.3o and 138o - 168o for strut location, V-settlement angle and wedge angle,

respectively.

The strut configuration on the fuel-air mixing process is evaluated throughout two critical parameters

which are mixing efficiency which computed at 20 stations having 10cm interval between them along

the x-axis on the duct and total pressure recovery factor as given eqs. 6 - 8 and shown in fig. 2b:

ηmix(x) =
ṁfuel,mixed

ṁfuel,total
=

∫
YreactρUdA∫
Y ρUdA

(6)

Yreact =

{
Y, Y ≤ Ystoich
(1−Y )Ystoich

1−Ystoich
, Y > Ystoich

(7)
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Fig 2. The design variables selected for CFD database generation
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Fig 3. The error percentage between the investigated grids for the mixing efficiencies computed at 20

stations.

ζ =
pt,outlet

Pt,inlet + Pt,fuelinjectors
(8)

2.3. Mesh independency:

We performed grid independence work for the numerical simulations of the multi-strut DMR combustor in

order to detect optimal number of elements by following a guideline proposed by Celik et al. [22]. For this

purpose, the 2DDMR combustor domain wasmeshed with unstructured and structured quadrilateral grid

types and three different number of elements, coarse (1.47M elements), medium (2.3M elements) and

fine (4.7M elements). The analysis were performed with a workstation having 128-core AMD 1.8GHz

with 1TB RAM. To achieve Y+ value as less than 1 in the entire flow domain, the mesh near the struts’

walls was fined and 0.001mmmesh size was used for the first height. The optimum number of elements

was determined by computing and comparing the error rates of mixing efficiencies in 20 stations and

total pressure recovery factor which were detailed in the sec. 2.2. The error rate (as per [22]) between

the mixing efficiencies (computed with three different number of elements) and TPR are shown in fig. 3

and also in Table 2.

Table 2. Refinement ratio, error rate in total pressure recovery factor (ζ) and computational time for

three analyzed grids with different number of elements.

# of elements (Ncoarsen/Nrefine)
0.5 Error [%] in ζ (coarsen - refine) Computational time [h])

4.7M 1.32 1.53 278.84

2.3M 1.61 1.27 166.49

1.47M - - 81.17

2.4. Regression of the CFD database:

A CFD database including 100 observations was created by using the numerical modeling given above

and the data points were determined by Latin hypercube sampling (LHS) method [23]. The fig. 2c

HiSST-2022-xxxx

Reduced order modelling of supersonic fuel-air mixing in a multi-strut injection scramjet

Page | 5

Copyright © 2022 by the author(s)



HiSST: International Conference on High-Speed Vehicle Science & Technology

Fig 4. Schematic illustration of a deep neural network model built for the present problem.

summarizes the process to generate surrogate model for fuel-air mixing process. The present work

aims to obtain a ROM for the mixing efficiency as a function of the duct x-axis and investigated strut

geometrical parameters as depicted in eq. 9. We thus regressed mixing efficiencies at 20 stations and

TPR.

ηi(x) = f(φ1, φ2, φ3) (9)

The ANNs which are inspired by the biological neural structures consisting of interconnected network of

neurons. An ANN model architecture is composed of input layer, a number of hidden layers and output

layer as depicted in Fig. 4. The ANN models for regression of the objective functions were constructed

on the Keras platform [24]. The model basically aims to build a representative mathematical pattern

between inputs and outputs of a given dataset to make prediction on the points that are not explored

[25]. The information provided by the inputs are transferred via neurons in the consecutive layers with

weights, w, biases, b, and activation functions, f . The weights quantify the impact of each input on the

output while the biases are used as adjustment constants for each layer. The calculation of an output

from a neuron in the jth layer, is shown in eq. 10.

aout = fj
(
bj +

N∑
i

aiwi

)
. (10)

For the regressions of all of the objective functions, rectified linear activation function (ReLU) performed

better than other activation functions (such as sigmoid or hyperbolic tangent). Thus, we selected ReLU

to activate hidden layers and activated output layer with a linear function to allow for unbounded output

values. The prediction performance of the built ANNmodel highly depends on the selection of the hyper-

parameters which compose of hidden layers, number of neurons in each hidden layer, or learning rate.

Random search method [26] which is available in the Keras platform, is used to find the optimal hyper-

parameters for each ANN structure built in the current work. It is worth to mention also that the ANN
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prediction performance strongly depends on how the inputs to the network are scaled. To determine the

best scaling for the input parameters, we utilized a proposed cost function, L, that can facilitate to assess
the quaility of the data parameterization for the regression [27, 28]. Minimizing the cost value allows us

to determine which scaling factor should be applied on the design variables (independent variables)

to yield promising regressibility of each objective function (dependent variables). The individual costs

Li([φ̃1, φ̃2, φ̃3], ηi) for mixing efficiency parameters and Li([φ̃1, φ̃2, φ̃3], ζ) for the total pressure recovery

factor were computed, where tilde denotes a scaled value. The best choice of scaling which led to the

minimum cost value, Li, were noted in Table ??. Particularly, each independent variable in the input

matrix, φi, is divided by its standard deviation, s, in Auto scaling, by
√
s in Pareto scaling, by s2/mean(φi)

in VAST scaling. The 〈−1, 1〉 scaling scales each variable to the 〈−1, 1〉 range.

The ANN prediction performance is assessed by checking the coefficient of determination, R2. The

closer R2 is to unity, the better the regression model predictions. The data matrix is divided into a

number of bins (5-10) in the assessment because the overall R2 computed for all points in the dataset

can be misleading. The R2 is computed in each bin to investigate the prediction performance thoroughly

[28]. This approach enables us to have an ANN model which represents the entire dataset rather than

focuses on any specific region. In the jth bin we thus computed the metric with eq. 11.

R2
j = 1−

∑Nj

i=1(φ
j
o,i − φj

p,i)
2∑Nj

i=1(φ
j
o,i −mean(φj

o))2
, (11)

where Nj represents the number of observations in the jth bin. For the ith dependent variable in the jth

bin, φj
o,i and φj

p,i represent observed and predicted outputs, respectively. While global errors are shown

in Table ??, the local errors are depicted by the parity plots (Fig. 6) given in Sec. 3.2.

3. Results

3.1. Regression assessment and machine learning model of fuel-air mixing:

In this section, we assess and discuss the Artificial neural network regression model performance in

the context of predicting mixing efficiency and ζ. Numerical simulations for investigating the fuel-air

mixing phenomena are included in the CFD database corresponding to various design variables. The

obtained data matrix, X, colored by the objective functions is demonstrated in Fig. 5. It can be clearly

seen that there is a trade-off between mixing efficiency and ζ. The general trend of the graphs indicates

that the wedge angle has a greater impact on each objective function. The interaction between the

fuel-air streams increases with the closeness of the struts when the V-settlement angle parameter is

set to higher values. The closer fuel struts to each other, the wave structures created by each of them

affect the others’ stream formation more. Even though the better mixing efficiency is obtained with the

smaller wedge angle, as seen in the map of η1, the bigger wedge angle gives better result with the low

V-settlement angle. One of the root causes for this observation, is that the hydrogen could spread with

by creating the wide vortexes as attributed to the lower wedge angle and create pure fuel zones behind

the struts instead of penetrating into the air-stream. A greater V-settlement angle could compensate the

situation by increasing the interaction between the flow streams and allow more air flow to be mixed with

the fuel. However, the better η1 can be also providedwith the bigger wedge angle in the region where less
interactions is observed due to the lower V-settlement angle. Because the low V-settlement angle allows

more air flow to interact with the fuel stream. While this has a slight impact on themixing efficiency values

in the region close to the fuel struts, this observation diminishes in the mixing efficiencies computed in

the further stations. Since the strut location is related with the initial interaction between the fuel streams

and shock wave of the incoming high-speed air, the effect of it on the objective functions varies with

the selection of the other design variables. This makes it difficult to understand the trend between the

injection position and the objective functions and accordingly to construct mathematical pattern between

independent design variables and outputs. The present paper is thus dedicated to discovering the non-

linearity of the current problem using deep learning methods.

Table 3 collects results for the hyper-parameter tuning in the Artificial neural network models built for the

mixing efficiency ηi and ζ. The hyper-parameters of the twenty-one network models were optimized by
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Fig 5. Mixing efficiencies, η1, η7, η15, and TPR values, ζ, in the space of the V-settlement angle and the

wedge angle. Solid intersecting lines represent the strut location design variable.
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following the methodology given in sec. 2.4. In all regressions, 80% of the whole dataset was selected

to train the data and the rest was used to validate the model. As pointed before, R2 value computed for

the whole trained dataset can be misleading, hence we first examined the values in each bin as per sec.

2.4. While the overall metrics are shown in Table 3, the parity plots of some of the regressed parameters

given in fig 6 enable one to see the error rates between the predicted and the observed points. Since

the data is very chaotic in the region close to the injection points, the ANN models struggled to train

the entire dataset as understood from the parity plots and also, overall R2 values. Although the error

rate computed between predicted and observed points is over than 20 % in some observations, it does

not have significant detrimental impact on the mixing efficiency profile. Therefore, we can say that

the machine learning model composed of the activation function, weight and biases and built for each

mixing efficiency station, represents the fuel-air mixing formulation as a function of investigated strut

design parameters.

Table 3. The optimized hyper-parameters of the Artificial neural network that yield the best R2 value.

The hyper-parameters are respectively: scaling factor, the number of hidden layers, cost for independent

parameter optimization, Li, and the learning rate, α. We also show the overall R2 values obtained for

each objective function.

Obj. Fun. Scaling # Hid. lay. Li α R2

η1 VAST 7 1.05 0.0001 .96

η2 Auto 14 1.22 0.0001 .98

η3 Auto 17 1.19 0.0001 .98

η4 Auto 8 1.22 0.0001 .99

η5 Auto 15 1.27 0.0001 .97

η6 Pareto 18 1.16 0.0001 .98

η7 Pareto 7 1.11 0.0001 .99

η8 Pareto 11 1.08 0.0001 .99

η9 Pareto 10 1.07 0.0001 .98

η10 Pareto 15 1.07 0.0001 .98

η11 Pareto 18 1.06 0.0001 .99

η12 Auto 15 1.09 0.0001 .99

η13 Auto 21 1.09 0.0001 .99

η14 Auto 10 1.09 0.0001 .99

η15 Auto 10 1.09 0.0001 .99

η16 Pareto 19 1.07 0.0001 .99

η17 Auto 12 1.11 0.0001 .98

η18 〈−1, 1〉 12 1.15 0.001 .99

η19 〈−1, 1〉 14 1.14 0.001 .99

η20 Pareto 12 1.08 0.0001 .99

ζ VAST 15 1.06 0.0001 .98

3.2. Impact of the design variables on the fuel-air mixing process:

The multi-struts set geometric parameters impact on the mixing and aerodynamic performance of the

combustor are investigated with respect to fuel penetration into the high-speed air stream, mixing effi-

ciency, and losses on the total pressure recovery factor. Some of observations were used to carry out the

discussion in this section. Their strut design parameters and mixing efficiency profiles were demostrated

in Table. 4 and fig. 7. It was observed that the wedge angle has an importance on the objective func-

tions since it can be considered as the dictating parameter of the formation of the shock-expansion wave

structure in the post-injection zone. Due to the presence of the non-uniform flow distribution along the

HiSST-2022-xxxx

Reduced order modelling of supersonic fuel-air mixing in a multi-strut injection scramjet

Page | 9

Copyright © 2022 by the author(s)



HiSST: International Conference on High-Speed Vehicle Science & Technology

Fig 6. Parity plots of some of the selected objective functions predicted by the Artificial neural network.
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Fig 7. Mixing efficiency profiles for a selected number of observations from the CFD dataset.

combustor inlet, attack of angle (AoA) of the incoming high-speed air stream varies along the both axis.

Even a small change on AoA could make an important impact on the mixing process by causing the

normal shock or oblique shock wave generation in the leading edge of the struts. This is strongly linked

to the flow separation and shock-shear layer interaction and highlights the significance of the selection

of the V-settlement angle and strut location design parameters. The change of AoA makes the differ-

ence on the orientation of secondary and tertiary compression zones as seen in fig. 8 for three random

observations. It can be clearly seen that the sizes of recirculation zones differed with the presence of

the normal and oblique shocks. Especially, the comparison of the observations of 29 and 31 which have

similar wedge and V-settlement angles, emphasises the significance of the strut location. Setting the

strut location to the further for the observation 31 caused the normal shock to generate in the leading

edge and the air flow to decelerate into subsonic conditions. The presence of the normal shock seen in

the observation of 31 affected also the fuel stream orientation and led to enlarging of the surface area of

the counter-rotating vortexes. This made a positive influence on the mixing level while the normal shock

made an adverse effect on the TPR.

Table 4. TPRs (ζ) for the observations selected for the discussion.

Observation number φ3 φ2 φ1 ζ

29 138.8 40.8 2.0 0.19

31 139.3 42.7 6.4 0.22

37 145.6 62.0 4.4 0.39

95 148.7 60.8 3.3 0.42

It is also worth to emphasize the importance the incoming shock wave caused by the nonuniform com-

bustor inlet for its interaction with the mixing zone and alteration of the wave structure in the mixing

region. It affects the mixing process with either intersecting one fuel stream or blocking the stream prop-

agation after it is reflected by the adiabatic wall. The reflected shock wave interacted with the shock pat-

tern in the post-strut zone and boosted regional pressure level. By this way, the flexibility of fuel stream

along the x-direction diminishes and it is pressed and forced slightly to spread along the y-direction.

This increases the mixing efficiency and reduces the mixing length. It was found that the greatness of
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Fig 8. The mach number contours of Cases of 29, 31 and 37 (from top to down) with re-circulation

zones.
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the reflected shock wave highly depends on the wedge angle. Moreover, V-settlement angle and strut

location were found important in terms of where and how the wave interacts with the struts and mixing

zone. In the comparison of the observations numbered with 31 and 37 as seen in fig. 8 and 9, the

struts set is chosen closer to the inlet in the sample 37 and more struts and fuel streams encountered

with the pressure wave coming from the intake and this amplified the oblique shock intensity especially

near the symmetry axis. Due to this reason, the observation 37 showed better mixing performance until

0.5m distance from the injection points as drawn in fig. 7. However, in further region, the importance of

having lower wedge angle came into prominence and made the flow in the observation 31 encounter

stronger oblique shock wave as indicated in fig. 9. The dominance of the wedge angle can be also easily

distinguished in the comparison of the observations of 37 and 95 by looking on the pressure distribution

with fuel stream propagation and and mixing efficiency profiles (Fig. 7). Even though both observations

have similar V-settlement angle and strut location, even 3-degree wedge angle difference causes big

gap in the mixing efficiency profiles in the far field region.

Thanks to the investigation of the strut location design variable, it was possible to comprehend the effects

of the distance between the injection point and throat of the combustor on the mixing and aerodynamic

features of the engine. The proper mixing of two different streams needs space/time. In some observa-

tions, the fuel flow left the combustor without being mixed with the air and it is very sure that the unburnt

rate of the hydrogen will be remarkably high and engine performance will be affected adversely. On

the other hand, placing the struts close to the exit of the duct made a slight positive impact on the ζ
since the shock-expansion wave structure are not constructed, yet. However, in some observations

having moderate strut location i.e. which the fuel is injected into the air around mid of the combustor,

the selection of the lower wedge angle provides rapid mixing and mixing efficiency and reduces the pure

hydrogen rate at the outlet consequently. As considering the adverse effects on the aerodynamic per-

formance, the wedge angle and strut location must be optimized to find the best solution for the mixing

and aerodynamic efficiencies in this sense.

4. Conclusion and Discussion

In the present work, we investigated supersonic fuel-air mixing phenomena in a multi-strut scramjet

engine combustor and built an Artificial neural network structure to create a model which can represent

the mixing and explore the design space of the strut configuration. We also computed total pressure

recovery factor in order to discuss the trade-off between the mixing and aerodynamic performance of

the combustor. For these, we solved the RANS filered compressible flow equations and generated a

CFD database including 100 data observations, each with varying strut configuration parameters: strut

wedge angle, strut V-settlement angle and strut location. The data points were determined by the Latin

hypercube sampling design of experiment method. In below, we present our findings and conclusions

from the current study:

• The mixing efficiency was integrated along the 20 stations on the duct axis and total pressure

recovery factor was computed between inlet and outlet of the combustor. The ANN model

was constructed for each objective function (21) and prediction accuracy was measured by

computing R2 coefficient of determination value. Since the mixing efficiency data close to the

struts are bit more chaotic, the overall R2 values here are relatively low as compared to the

ones in other zones. The parity plots enabled us to view the local errors. Even though the

error rate in some points are high, this error does not make any important adverse impact in

the general profile of the mixing efficiency.

• In the present problem, the fuel-air mixing took place throughout shock-expansion waves struc-

ture generated by the fuel struts. The process is substantially influenced by the greatness and

orientation of this structure which are determined by the investigated strut design parameters.

We found the strut wedge angle is the dominant parameter for the formation of the shock-

expansion wave in behind the struts.

• It was observed that an incoming shock wave defined by the nonuniform boundary condition of

the air inlet could significantly affect the mixing process. The angle, direction, and greatness
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Fig 9. The pressure contours of observations 31, 37 and 95 (from top to down) with fuel streamlines.

HiSST-2022-xxxx

A.C. Ispir, K. Zdybal, B.H. Saracoglu, T. Magin and A. Coussement

Page | 14

Copyright © 2022 by the author(s)



HiSST: International Conference on High-Speed Vehicle Science & Technology

of the incoming wave have importance when it interacts with the fuel streams. This thus em-

phasizes the significance of selection of the V-settlement angle and strut location parameters.

They play also very essential roles on the generation of the secondary and tertiary compression

zones, counter-rotating vortex pairs which directly affect the orientation and penetration of the

fuel stream. The wrong combination could also led to the occurrence of the normal shock wave

at the leading of the struts which brought about adverse effects on the total pressure recovery

factor.

• We also observed that an enough distance is needed to obtain a proper fuel-air mixing. Ap-

proaching the fuel injectors by setting the strut location to its corresponding values, too close

to the combustor exit can make slight positive impacts on the total pressure recovery factor

since the shock-expansion wave structure does not have time/space to form. However, the

mixing efficiency was computed quite low in the observations having big strut locations. Even

though the low wedge angle in such cases could compensate the lowness of the mixing effec-

tiveness by causing the generation of strong turbulent flow behind the struts, the distance may

not enough for a chemical reaction of the hydrogen-air mixture. Thus, the design variables are

highly recommended to be optimized by considering also the combustion.
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