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Abstract  

An innovative approach for the return of reusable space transportation vehicles has been proposed by 
DLR: The winged stages are to be caught in the air and towed by subsonic airplanes back to their 
launch site without any necessity of an own propulsion system. This patented procedure is called in-
air-capturing.  

The performance gain by this advanced method shows a possible increase in delivered payload 
between 15 % and 25% or allows for significantly reducing the size of a reusable system without any 
loss in payload mass when comparing to winged fly-back. 

The paper gives an overview of ongoing experimental and numerical work at DLR in raising the TRL 
and proposes a development roadmap on how to bring this efficient technology to reality.   
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Nomenclature/Acronyms  

ACCD Aerodynamically Controlled Capturing Device 
AoA Angle of Attack 
CAD computer aided design 
CFD Computational Fluid Dynamics 
CoG Center of Gravity 
DRL Down-Range Landing 
FE Finite Element 
GLOW Gross Lift-Off Mass 
IAC In-Air-Capturing 
L/D Lift to Drag ratio 
LFBB Liquid Fly-Back Booster 
RCS Reaction Control System 
RLV Reusable Launch Vehicle 
RTLS Return To Launch Site 
TRL Technology Readiness Level 
TSTO Two-Stage-To-Orbit 
UAV Unmanned Aerial Vehicle 

1. Introduction 

Return To Launch Site (RTLS) and Down-Range Landing (DRL) are currently employed by SpaceX for 
the first stages of the Falcon 9 and Heavy launchers, requiring significant amounts of fuel for 
deceleration and landing. Techniques of turbofan-powered return flight like winged LFBB are more 
efficient, however, obligate an additional propulsion system and its fuel, which also raises the stage's 
inert mass. A completely different and innovative approach for the return of RLV-stages with better 
performance offers the patented “In-air-capturing” (IAC) [1]: The winged reusable stages are to be 
caught in the air and towed back to their launch site without any necessity of an own propulsion 
system for this phase [2].  

A schematic of the reusable stage's full operational IAC-cycle is shown in Figure 1. At the launcher's 
lift-off the capturing aircraft is waiting at a downrange rendezvous area. After its MECO the reusable 
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winged stage is separated from the rest of the launch vehicle and afterwards follows a ballistic 
trajectory, soon reaching denser atmospheric layers. At around 20 km altitude it decelerates to 
subsonic velocity and rapidly loses altitude in a gliding flight path. At this point a reusable returning 
stage usually has to initiate the final landing approach or has to ignite its secondary propulsion 
system.  

 
Figure 1: Schematic of the innovative “in-air-capturing”  

Differently, within the in-air-capturing method, the reusable stage is awaited by an adequately 
equipped large capturing aircraft (most likely fully automatic and unmanned), offering sufficient 
thrust capability to tow a winged launcher stage with restrained lift to drag ratio. The entire 
maneuver is fully subsonic in an altitude range from around 8000 m to 2000 m [3]. After successfully 
connecting both vehicles, the winged reusable stage is towed by the large carrier aircraft back to the 
launch site. Close to the airfield, the stage is released from its towing aircraft and autonomously 
glides to the landing runway similar to a conventional sailplane. 

After DLR had patented the “in-air-capturing”-method (IAC) for future RLVs, two similar approaches 
have been proposed. However, those named mid-air retrieval or mid-air capturing are relying on 
parachute or parafoil as lifting devices for the reusable parts and helicopters as capturing aircraft. The 
first proposal was made by the Russian launcher company Khrunichev [5] and the most recent one by 
the American company ULA for its newly proposed Vulcan launcher. The ULA proposal intends 
recovering not more than the first stage’s engine bay instead of a full stage [6], [7].  

1.1. Potential performance advantage 

Any RLV-mode degrades the launcher’s performance compared to an ELV due to additional stage 
inert mass. A comparison of the different performances is of strong interest because these are related 
to stage size and hence cost. Since a reliable and sufficiently precise estimation of RLV costs is almost 
impossible today, the performance impact comparison gives a first sound indication of how promising 
the modes are. 

The performance impact of an RLV is directly related to its (ascent) inert mass ratio or net-mass 
fraction, reasonably assuming that the engine Isp is not considerably effected. Inert masses of the 
stage during ascent flight are its dry mass and its total residual propellants including all those needed 
for controlled reentry, landing, and potentially fly-back. A specific inert mass ratio is then defined as:   

 

The higher the inert mass ratio of a stage, the lower is its acceleration performance if propellant type 
and engine performance are unchanged. The overview in Figure 2 shows RTLS far above all other 
types while the IAC-stages obviously have a performance advantage not only when compared to the 
LFBB (as already claimed in the past, see [2 - 4]) but also in comparison to the DRL-mode used by 

inert mass ratioi =
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SpaceX for GTO-missions. The smaller the inert mass ratio and the smaller the propellant loading for 
the same mission, the better the system performance and hence potential cost reduction. 

 
Figure 2: Inert mass ratio depending on RLV-return modes and ascent propellant loading, GTO-

mission  

A direct comparison between two winged RLV first stages with the same GTO-mission requirement 
and similar separation Mach-number around 12 but different return-modes is depicted in Figure 3. 
Data for both launch vehicles have been generated in preliminary sizing loops taking into account 
ascent trajectory optimization and atmospheric re-entry and return flight. The turbofan-powered LFBB 
mode requires a significantly heavier and larger stage compared to an IAC-mode RLV. 

 
Figure 3: Relative comparison LFBB-mode with “in-air-capturing”-RLV mode, GTO-mission 

The potential for improvement when using the “in-air-capturing”-mode in this example is found 
between 22% and almost 46% in this example using realistic sizing conditions. The stage dry mass, 
usually correlated with development and production costs, is reduced by 37% compared to the 
reference LFBB-configuration. Even when taking into account the additional infrastructure costs of 
operating the capturing aircraft, the huge cost reduction potential of “in-air-capturing”-RLV compared 
to more conventional approaches becomes obvious with these numbers. 
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2. How “in-air-capturing” (IAC) works 

The winged reusable stages are to be caught in the air, and towed back to their launch site without 
any necessity of an own propulsion system [2]. The idea has similarities with the DRL-mode, 
however, initially not landing on ground but “landing” in the air. Thus, additional infrastructure is 
required: a relatively large-size capturing aircraft. Used, refurbished and modified airliners should be 
sufficient for the task. 

A schematic of the reusable stage's full operational cycle has been shown already in Figure 1. At the 
launcher's lift-off the capturing aircraft is waiting at a downrange rendezvous area. After its MECO the 
reusable winged stage is separated from the rest of the launch vehicle and afterwards performs a 
ballistic trajectory, soon reaching denser atmospheric layers. At around 20 km altitude it decelerates 
to subsonic velocity and rapidly loses altitude in a gliding flight path. At this point a reusable returning 
stage usually has to initiate the final landing approach or has to ignite its secondary propulsion 
system.  
 
Differently, within the in-air-capturing method, the reusable stage is awaited by an adequately 
equipped large capturing aircraft (most likely fully automatic and unmanned), offering sufficient 
thrust capability to tow a winged launcher stage with restrained lift to drag ratio. Both vehicles have 
the same heading but on different flight levels. The reusable unpowered stage is approaching the 
airliner from above with a higher initial velocity and a steeper flight path, actively controlled by 
aerodynamic braking. The time window to successfully perform the capturing process is dependent on 
the performed flight strategy of both vehicles, but can be extended up to about two minutes. The 
entire maneuver is fully subsonic in an altitude range from around 8000 m to 2000 m [3]. After 
successfully connecting both vehicles, the winged reusable stage is towed by the large carrier aircraft 
back to the launch site. Close to the airfield, the stage is released from its towing aircraft and 
autonomously glides back to Earth like a sailplane. 
 
The selected flight strategy and the applied control algorithms show in simulations a robust behavior 
of the reusable stage to reach the capturing aircraft. In the nominal case the approach maneuver of 
both vehicles requires active control only by the gliding stage. Simulations (3DOF) regarding 
reasonable assumptions in mass and aerodynamic quality proof that a minimum distance below 200 
m between RLV and aircraft can be maintained for up to two minutes [3].  

2.1. Simulated approach maneuver 

After deceleration to subsonic speed at an altitude around 20 km, the winged stage is actively 
heading towards the capturing aircraft. Under nominal circumstances the latter is assumed to be in a 
'passive' mode, just cruising at constant altitude (e.g. 8000 m) and relatively low flight Mach-number 
of about 0.55 which corresponds to the equivalent earth speed 400 km/h. It has to be assumed that 
both vehicles are now permanently in communication with each other. During descent the reusable 
stage is able to perform some position-correction maneuvers and to dissipate kinetic energy, if 
required. It plays the 'active' part in the approaching maneuver. 

The absolute value of the angle between both vehicles η decreases gradually during descent. At the 
instant when this angle becomes smaller than the winged stage's glide path (| η | < | γgl |), the 
capturing aircraft receives a signal from the reusable stage to also start its descent flight at a pre-
chosen capturing angle γas = γcapt. The launcher stage itself adapts the path angle such, to follow the 
capturing aircraft. As a result, after a short time both vehicles fly in line with an inclination angle 
corresponding to the chosen capturing glide path angle. 

The winged stage follows the capturing aircraft reducing its distance ∆S and its velocity V. The 
approach maneuver has been simulated for different reusable stages (see [3] for type description) 
according to the above explained method, and the control constraints are applied. A reusable stage 
with separation velocity around 2 km/s is used as an example case.  

The aerodynamically controlled approach as shown in Figure 4 is initiated when the reusable stage 
reaches the denser atmospheric layers and decelerates to the subsonic regime. The steep glide angle 
of around –18 degrees is performed with a slowly decreasing air speed of around 265 m/s. After the 
capturing aircraft has received the appropriate signal, both vehicles are descending on nearly the 
same glide slope (600 s). As can be clearly seen, the returning stage is still the active vehicle, since it 
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is subject to some control deviations in flight path angle γcapt. The winged stage actively reduces 
velocity up to the point where its minimum safety distance is achieved (675 s).  

 

 
Figure 4: Simulation of the reusable stage's final approach procedure to the capturing aircraft starting 

500 s after separation from launcher [3] 

As can be seen from Figure 5, the total distance between the two flying craft falls short 0.5 km 
around 655 s after separation. Subsequently the distance could be controlled in this simulation at a 
minimum range between 155 and 200 m for duration of 130 s. The upper boundary is not set by 
vehicle control, but by a minimum acceptable level above ground. The final altitude in this simulation 
is as low as 1.2 km. A time for capturing up to at least one minute is nevertheless well within reach, 
since the altitude after this period still accounts for more than 2.8 km. 

 
Figure 5: Total distance between the two stages in final approach procedure starting 500 s after 

separation from launcher [3] 

2.2. Potential capturing hardware 

The most promising capturing technique is using an aerodynamically controlled capturing device 
(ACCD), showing the best performance and lowest risk [3, 4]. The ACCD is to be released and then 
towed by the airplane. This device (a preliminary artist impression is shown in Figure 6) contains the 
connecting mechanism and simply advances the stage by its own drag and lift, provided by small 
wings (typical span 1.5 m). Actuators control the ACCD’s orientation and the approaching velocity 
might be further controlled by braking of the towing rope from inside the aircraft. With a release 
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initiated at 230 m distance between the two crafts, the whole maneuver takes about 14 s in the 
nominal case. All loads remain below 3 g and the final relative velocity is at 5 m/s. 
 
Aerodynamic stability and at the same time sufficient maneuverability of the ACCD during the 
subsonic capturing process are required. A preliminary configuration has been defined and will be 
assessed by 6DOF-simulations. 

 
Figure 6: Rendering of the ACCD and the returning stage cautiously approaching each other [3, 4] 

The capturing mechanism inside the ACCD is a critical part which has been preliminarily designed [4] 
for the static load conditions encountered when capturing and towing a large fictive RLV stage. The 
mechanism lay-out has to be defined for correct kinematic functioning in capturing-, towing-, and 
release-mode, as well as for good shock attenuation.  
 
A preliminary design of such a capturing mechanism has been developed (see first design iteration in 
Figure 7) and has been subsequently mechanically sized supported by Finite-Element stress and de-
formation analyses [4, 9, 10]. All elements of the mechanism fit into the ACCD fuselage and consist of  

• a ball-shaped head with ball jacket, 
• industrial shock-absorber,  
• different spring and damping elements, and  
• additional support structure.  

 
Figure 7: Sketch of the capturing mechanism inside the ACCD geometry highlighting the ball-shaped 

head in red and the RLV stage anchor shown in parallel and deflected position [4] 

The principal idea of the mechanism is to direct a long passive anchoring device from the RLV to the 
capturing- and hold mechanism inside the ACCD. A funnel like opening at the ACCD’s back with a 30 
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deg. cone opening allows for the mechanically steered guidance in case of small flight position imper-
fections prior to connection and for the required axial deflection between both flying items in the 
capturing procedure and also thereafter in towing flight. Inside the ACCD all axial loads as well as the 
relative pitch and yaw movements between the different flight vehicles are transferred through a ball 
joint to its jacket capable of axially gliding inside the ACCD fuselage. Relatively high local pressures 
between the ball and the jacket will require also a good lubrication between those two metallic parts. 
The connecting shock between both vehicles is transferred in the ACCD's forward direction to an 
industrial shock absorber (in the center of Figure 7). Such a device allows for a constant deceleration 
with a moderate axial force and rapid oscillation damping. 
 
Two load cases have been identified as dimensioning and have been analyzed in static structural 
stress and strain calculations [4, 9]. Load Case 1: capturing with connecting or coupling shock which 
has been calculated at 27 kN based on the assumption of an industrial linear shock absorber 
decelerating the ACCD with velocity 4.9 m/s relative to the RLV. Load Case 2: towing of the RLV-
stage with 174.4 kN which is equivalent to the static towing force for a large winged stage of 80 tons 
empty weight and subsonic L/D of 4.5.  
 
The finite element method has been used to obtain the stresses in the complex-shaped parts. The FE-
tools ANSYS [4, 9] and in a second iteration I-DEAS MS11v4 [10] have been used. All of the parts 
have been separately analyzed to avoid modeling of complicated surface interfaces. Instead, such 
interfaces are replaced by a set of distributed loads or boundary constraints delivering the respective 
reaction forces. Although this approach might not always fully represent the actual conditions, it has 
been considered as adequate for a preliminary sizing of the components.  
 
Structural sizing results are presented in [4, 9, 10]. A second iteration of the capturing mechanism 
structures has been performed to reduce excessive weight of the first design [4, 9]. The total mass of 
the central core including all mechanisms but without wings, flaps, actuators, and avionics could be 
reduced to less than 80 kg. A combination of aluminum and steel alloys has been selected. Maximum 
calculated stresses remain below 200 MPa and thus stay well within the capabilities of the materials. 
Figure 8 shows as an example the behavior of one of the most critical parts, the spherical head, 
subjected to load cases 1 and 2. Despite the seemingly spectacular deformations in Figure 8, the 
maximum actual deformation of this part is less than 0.18 mm. 
 

    
Figure 8: Von Mises stress distribution in spherical head and strongly magnified deformations, load 

case 1 at left, load case 2 at right [10] 

Figure 9 depicts a suitable design of the ACCD capturing mechanism with major dimensions for a full 
scale variant capable of connecting to and towing of an 80 tons winged stage. Such an RLV with 
approximately more than 400 tons GLOW is a good check on the principal feasibility of the capturing 
devices. Obviously, smaller versions of the ACCD could be sized for reduced scale reusable stages.  
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Figure 9: Latest design drawing of optimized capturing mechanism inside the ACCD geometry with 

major dimensions in [m] [10] 

A preliminary investigation of the aerodynamic behavior has been conducted to allow for 6-DOF 
simulations of the ACCD in flight. The Missile DATCOM code [11] has been used to determine the 
aerodynamic coefficients and derivatives and to improve the aerodynamic design of the ACCD. The 
configuration shall be aerodynamically stable and at the same time allow maneuverability to enable 
corrections of the ACCD’s position and attitude. The position of the CoG with respect to the center of 
pressure determines the stability and maneuverability: the greater the distance between the CoG and 
the CoP (with the CoG being in front of the CoP) the more stable the aircraft gets, however 
maneuverability is decreased.  

 
Figure 10: Preliminary pitch moment coefficient (left) and L/D (right) of ACCD at different Mach 

numbers assuming reference point x = 0.88 m wrt the nose 

Figure 10 shows the pitch moment coefficient and L/D versus the angle of attack for different Mach 
numbers with the moment reference at 0.88 m with respect to the nose. The ACCD shows almost 
indifferent behavior regarding the pitch coefficient at Mach 0.2, all other flight points are 
longitudinally stable. Additionally, the ACCD is laterally stable. Positioning the CoG at 0.9 m already 
leads to a laterally unstable configuration. The maximum Lift-to-Drag ratio is around 4 at low 
subsonic speed and 2.3 at commercial airliner cruising speeds (Mach 0.8). Since the vehicle is highly 
stable due to its rather big control surfaces and its low mass and inertias the maneuverability had to 

        

HiSST 2018-1580867 Page | 8 
Bringing Highly Efficient RLV-Return Mode “In-Air-Capturing” to Reality Copyright © 2018 by author(s) 



HiSST: International Conference on High-Speed Vehicle Science Technology 

be increased by positioning the control surface hinges at 70% of the chord length throughout the 
whole span. This increases the distance between the center of the control surface forces and the 
CoG. The thus trimmable AoAs and sideslip angles range from –8° to 8° at low subsonic velocities 
and from -5° to 5° at high subsonic velocities. A repositioning and resizing of the control surfaces 
could be considered based on 6DOF-simulation results in order to enhance the trimmable AoA range. 
Furthermore, a forward located CoG at 0.88 m would require a trim mass in the range of 20 kg in the 
current configuration. As visible in Figure 7 and Figure 9, the available volume inside the ACCD 
fuselage is quite large and enables repositioning of equipment like batteries.  

2.3. Towing aircraft 

Technical requirements of the tow-aircraft are given in [3]. The rope and its mechanism have to be 
designed to withstand the pulling stress with regard to dynamic loads. The maximum values are most 
likely being reached during pull-up of the assembly after capturing. A towing rope diameter of 1.6 cm 
is estimated to be sufficient for up to 200 kN load [3]. 
 
The thrust requirements of the capturing aircraft are dependent on the reusable stage's mass and its 
L/D-ratio. The thrust reserve of the capturing aircraft has to exceed 50 to 200 kN (equivalent to 
approximately 25 to 80 tons of to be towed stage mass) in an adequate flight altitude [3]. A four 
engine jetliner without normal cargo loading offers sufficient thrust margins. This is corresponding to 
an Airbus A-340 or Boeing-747-class jet, which have been produced in large numbers. Moreover, a 
considerable quantity of these airplanes is available at an affordable price, since significant numbers 
have been retired from commercial airline service.  
 
A catastrophic mid-air collision has to be avoided by fully automatic and redundant control avionics of 
both vehicles operating in a synchronized mode. Any pilot interference in this maneuver from the 
capturing aircraft would be far too slow, to have a positive impact. Since no real demanding pilot 
work is foreseeable, one should seriously consider redesigning the capturing and towing aircraft as an 
unmanned aerial vehicle. Taking into account the significant progress recently achieved in UAV 
avionics, this is not an exotic idea. By giving up on board pilot control for all capturing missions, it 
might be also possible to broaden the flight envelope, which will not be acceptable with men on 
board. This further enables high risk maneuvers – if ever required - which are otherwise excluded and 
would result in the loss of the returning stage. Hence an unmanned towing aircraft will augment 
overall reliability and safety of the in-air-capturing method. The certification process of the large 
unmanned vehicles is to be addressed early in the design phase. As the full capturing mission is to be 
performed exclusively over uninhabited areas off-shore of a launch site, the required certification is 
currently not assessed as a blocking point.  
 

3. Ongoing flight experiments 

DLR in its internal project AKIRA [12] is now moving on from pure simulations to lab-scale flight 
experiments [13] aiming for a TRL between 3 and 4. Establishing connection between the RLV-stage 
and the large carrier aircraft requires formation flight of both vehicles during the approach maneuver. 
Actual coupling is best achieved by a highly agile connecting device or coupling unit with onboard 
actuators like the above discussed ACCD.  

The first validation during the lab-scale flight experiments are performed using smaller unmanned 
aircraft. One will tow the coupling device and a second will represent the booster stage. This poses 
certain boundary conditions, especially on the weight of the towed device, as the UAVs have limited 
excess power to perform the tow. Also the experiments must be performed on a racetrack course 
instead of a straight track for safety reasons and although the coupling maneuver will be 
demonstrated, the actual tow of the aircraft is not a part of the AKIRA-experiments. 

3.1. Subscale coupling device 

For its basic functionality, the subscale coupling device consists of a cone, ensuring the stable flight 
behavior by its own drag and four control surfaces, which deflect for roll, vertical and horizontal 
movements as shown in Figure 11. 
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Figure 11: Surface deflections for ACD control (left) and prototype device (right) 

For automatic control of the ACD, avionics, consisting of sensors and a control computer (including 
data logging), telemetry, actuators and a power source are required. There is a variety of possibilities 
to mount these different devices. Two approaches have been considered for integration: 

• control computer, telemetry and power source are stored in the towing aircraft and just the 
actuators and sensors are implemented in the ACD 

• the ACD is completely equipped, including its own power source 

The first variant allows for a much lower weight of the ACD. However, it is necessary to transfer all 
signals over the towing rope length, which will be approximately 20 to 30 m in the scaled scenario. In 
practice, this is challenging without the use of amplifiers that are difficult to integrate into a scaled 
setup. Furthermore, it is more complicated to use the device with other tow-vehicles because they 
need to be equipped with the necessary modules. Therefore, variant 2 was chosen, i.e., to have a 
completely equipped ACD. 

For the experiments a first demonstrator of the coupling device was build. The main material is CRFP 
to remain as lightweight as possible. Table 1 summarizes some basic data of the device. 

Table 1: Key parameters of the finished test coupling device 

length ≈ 450 mm 
cone diameter 370 mm 
weight (incl. avionics) 650 g 
control surface span (each) 120 mm 
control surface width (each) 100 mm 
maximum control deflection +/- 45° 

 

The avionics consist of a commercial Pixhawk autopilot system which comes with various equipment 
and sensors, as a u-blox M8N GPS with compass module, 433 MHz telemetry, RC receiver, UBEC 
voltage regulator and a voltage monitor for the battery and already provides a way for internal 
logging of flight data. The control system is realized by adapting the commonly used autopilot 
software of the Pixhawk hardware. The basic open source software is ‘PX4 Firmware’, which is based 
on a ‘NuttX’ real-time operating system that runs sensor drivers and a flight controller. In order to 
have full control of the actuators, the preinstalled flight management is replaced by a user application 
generated from a Matlab©/Simulink model with automatic code generation and the ‘Pilot Support 
Package’ (PSP) provided by Matlab, including a number of libraries  to use Pixhawk interfaces (e.g. 
sensor data or RC input) within the Simulink environment. Based on the toolchain, a modular, model-
based design of the controller with automatic implementation of the generated code into the basic 
software of the autopilot was realized. Figure 12 illustrates the process of the controller 
implementation. For the later testing of different control modes, a model structure is constructed, 
where different, switchable modes are implemented. 
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Figure 12: Schematic of controller realization of the coupling device [14] 

In order to make coordinated movements towards the nose boom of the UAV representing the 
booster stage, the device must be stabilized around its roll axis at a specified angle. This was done in 
a first step by implementing a PID roll angle controller simply using the feedback of the attitude 
estimator.   

3.2. Flight evaluations 

The build and controlled device was tested for its functionality in ground runs and in flight tests 
towed by an aircraft (Figure 14) but without yet connecting to 2nd UAV. With the enabled roll 
stabilization the possible deflections were evaluated. The results are shown in Figure 13 for horizontal 
movements and vertical movements. For these experiments the roll stabilization commands were 
mixed with control inputs from a remote controller. The displacements can be evaluated from the 
changes in height offset between coupling device and tow aircraft for the vertical movements and the 
offset of the coupling device to the flown aircraft track for the horizontal movements. Due to heavy 
wind conditions only short inputs could be evaluated during the tests.   

    

 

Figure 13: Horizontal (top) and vertical (bottom) displacement during control inputs [14] 

The first evaluation showed satisfying results for the coupling device movements from 2.5 m to 3 m 
per side which spans a 6 m x 6 m frame for positioning. Especially when regarding the wing span of 
the towing vehicle which is in the same size as the movements, this seems to enable for sufficient 
maneuvering.  
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Figure 14: Coupling unit (left) and in flight test (right) with towing UAV “MAL” of DLR 

The next step for performing the in-air capturing demonstration is to set-up a GNSS based formation 
between the two vehicles which is based on a communication link. The resulting error from the GNSS 
data is expected to be within the positioning capabilities of the coupling device. Two commercial 
autopilots are used which are modified for the formation flights. One is set to be the ‘master’ system 
which sends waypoint and speed commands to the ‘slave’ system. These waypoints contain a relative 
position based on the navigation data of the master system. First flights are performed using two 
very lightweight test vehicles (takeoff mass <3 kg, Figure 15) to keep the risk and effort at a 
minimum. These planes are nevertheless fully equipped to perform automatic missions and capture 
video data. Experiments with such a communication established have already been completed and 
are currently evaluated for their potential.  

 
Figure 15: Test vehicles for automated formation flight testing 

In parallel, ongoing work is the detection of the position from the device with respect to the booster 
demonstrator. This is done by camera and laser based environment perception at the RLV-stage 
demonstrator. The reason for equipping the sensors on side of the booster is simply the weight 
limitation of the device. In a real scenario it might be more feasible to equip the coupling device. 

The originally planned flight and connecting tests of AKIRA are partially adapted in order to be 
synchronized with the new, more ambitious project FALCon which is described in the following section 
4. 

 

4. Outlook: H2020 research project FALCon 

In order to bring the promising “in-air-capturing”-technology forward, a new project proposal with the 
name FALCon (Formation flight for in-Air Launcher 1st stage Capturing demonstration) has been 
submitted early 2018 to the Horizon 2020 call SPACE-16-TEC-2018 Potential Launch system 
reusability technologies and their applicability for European needs [15]. The evaluation of the 
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proposal was positive and grant negotiations with the European Commission are close to completion. 
The project kick-off is intended for February 2019, scheduled duration is 36 months and with total 
funding of 2.6 M€ the FALCon project will address three key areas: 

• “in-air-capturing”-Development Roadmap and economic benefit assessment 

• “in-air-capturing”-Experimental Flight Demonstration 

• “in-air-capturing”-Simulation (subscale and full-scale) 

The development roadmap for “in-air-capturing” is to be defined in cooperation with the European 
stakeholders e.g. ESA, CNES, ONERA, CIRA, VKI, and industrial primes. This process will consider the 
classical Technology Readiness Level (TRL) definition (e.g. [16]). Although, the TRL-approach is 
helpful, it has been found not necessarily sufficient for successful development of RLV. Therefore, a 
NASA working group has proposed a “Phased Development Approach (PDA) using Integration 
Readiness Levels (IRLs) to facilitate selection, sequencing and staging of flight test demonstrations to 
reduce the risks inherent in technology development.” [16] Exactly this methodology will be 
implemented in FALCon for the establishment of the “in-air-capturing” roadmap. 

Starting point of all activities concerning “in-air-capturing” is the most recent technology development 
status from the ongoing DLR AKIRA-project [12]. Results from this activity will become available to 
FALCon-project partners. Completion of AKIRA will also finish PDA Phase 1 and will approach a TRL of 
4. The Horizon2020 FALCon-project will initiate PDA Phase 2, will consolidate the TRL of 4 and is 
planned to bring all relevant technologies close to a TRL of 5.  

Based on the achievements in FALCon (e.g. better, more accurate simulations, windtunnel 
measurements, sensor data integration procedures, etc.), the next demonstration steps are in-flight 
verification of the RLV-demonstrator, of the capturing aircraft and of the coupling unit to confirm the 
aerodynamic qualities, ballistic coefficients and control margins of the system. At this stage the TRL 
of 6 and system integration IRL between 1 and 2 will be achieved. Funding could be provided by 
relevant ESA technology development programs like FLPP which are considered as a suitable 
framework.  

 
Figure 16: “in-air-capturing”-Development Roadmap 

The experimental test and validation processes in FALCon are the key objectives of the project. Half 
of all the workpackages are dedicated to this goal. The demonstrator for the reusable launch vehicle 
will be completely designed and built from scratch while an already available vehicle is used as tow 
aircraft. The coupling unit will be a redesigned and upgraded version of the device developed and 
used for research studies of the AKIRA project. An integrated communication and data fusion strategy 
will be developed in FALCon. A sensor package is to be integrated into the flight experiment coupling 
unit with an infrared camera system in combination with optical markers. The hardware including on-
board computers must be lightweight for not influencing the flight performance but powerful enough 
to run the state machine and the formation algorithms. 
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Adequate simulation of the “in-air-capturing”-process is the other key-element to increase its TRL in 
FALCon. This is done in two workpackages which should have a close interaction and fruitful 
exchange of requirements, methods and procedures. Experiment simulation is supported by 
windtunnel tests in subsonics at VKI. Return simulation of full-scale RLV first stages is enabled by CFD 
calculations of the flow field around the three full-scale vehicles/objects in formation flight and the 
dynamic modeling of all these vehicles including the flexible dynamics of the towing rope.  

 

5. Conclusion 

The innovative method for the return to the launch site of reusable winged stages by “in-air-
capturing” is described and its major advantage of increased payload mass to orbit is quantified for 
different missions and RLV-separation conditions.  

The selected flight strategy and the applied control algorithms in 3DOF-simulations show a robust 
behavior of the reusable stage to reach the capturing aircraft. When considering reasonable 
assumptions in mass and aerodynamic quality of the vehicles, a minimum distance below 200 m can 
be maintained in the simulations for up to two minutes. 

The most promising capturing technique is using an aerodynamically controlled capturing device 
(ACCD), showing the best performance and lowest risk. A capturing mechanism has been 
preliminarily designed for the ACCD. The structural parts have been pre-dimensioned for two static 
load cases supported by finite element calculations. Component masses have been minimized by 
iterative resizing. 

DLR is currently progressing with the “in-air-capturing”-technology by performing lab-scale flight ex-
periments aiming for a TRL between 3 and 4. Soon a new European research projects FALCon will be 
initiated within Horizon 2020 which should bring the TRL beyond 4 in 2021. Subsequently, the 
advanced method is to be refined in more complex integrated systems of increased scale bringing “in-
air-capturing” to operational reality. 
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