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Abstract  

Numerical study of mass addition influence on heat transfer of two models of descent space vehicle 
at hypersonic flow regimes is carried out. Numerical simulation is fulfilled using Navier-Stokes 
equations in axisymmetric statement. The first model geometry and flow conditions are correspond to 
those in experimental work [1], and the second model corresponds to descent space vehicle of 
ExoMars project. Various mass flow rates are considered in order to investigate effect of gas injection 
on values of heat flux. Calculations are carried out using in-house software package HSFlow. 
Comparison of the results with experimental results [1] and numerical results of other authors is 
made.  
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Nomenclature 

B – Source vector     p – Pressure 
E – Flux vector in x direction    r - distance 
G  - Flux vector in y direction    s – Strain velocity tensor 
H – Total enthalpy     t - Time 
J  - Transformation Jacobian    u – Velocity component in x direction 
I – Heat flux vector     v – Velocity component in y direction 
L – Characteristic linear size     - Longitudinal curvilinear coordinate 
M – Gas molar weight      - Normal curvilinear coordinate 
M – Mach number      - Coefficient of thermal conductivity 
R – Universal gas constant     - Coefficient of molecular viscosity 
Re – Reynolds number      - Density 
Q – Vector of conservative dependent values   - Symmetric tensor of viscous stresses 
T – Temperature     c – Cartesian 
V – Velocity vector     w –Wall 
cp  specific heat  capacity at constant pressure  ∞ - Free stream value 
e – Total energy per unit volume   * - nominal value 
h  - Static enthalpy 
m – mass addition 

1. Introduction 

During descent of a space vehicle at hypersonic regimes high levels of heat flux arise, leading to 
strong heating of the vehicle surface. It is well known that ablative heat-shielding is used for heat 
removal in order to reduce surface heating. Also, heat-shielding systems, producing mass addition 
into boundary layer, are applied. Heat-shielding systems effectively decrease temperature of the 
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space vehicle on the flow regimes with high-level heating. However, mass addition also may result in 
early laminar-turbulent transition, and, as consequence, sharp increase of aerodynamic heating. In 
this work two space vehicle models are considered: the simplified hemispherical model [1] of space 
vehicle and real model of descent space vehicle for Mars exploration.  

2. Governing equations 

Numerical simulation of the problem is based on the solution of axisymmetrical Navier-Stokes 
equations. In arbitrary curvilinear coordinate system (, ), where x = x(, ), y = y(  - Cartesian 
coordinates, axisymmetrical Navier-Stokes equations are written in divergent form as: 
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Vectors E, G are related to corresponding vectors Ec, Gc in Cartesian coordinate system by formulas: 
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where       , / ,J x y    transformation Jacobian. 

Cartesian components of vectors Ec and Gc for axisymmetrical Navier-Stokes equations are as follows: 

 






 
 
 
 
 
 

c
u
v
e

Q , 


 
 



 
     
   

2
xx

c
xy

x

u
u p

uv

uH I

E , 


 

 



 
     
 
  

2
xy

c
yy

y

v
uv

v p

vH I

G  

where e = h  p/ + (u2 + v2)/2  total energy per unit volume; H = h + (u2 + v2)/2  total enthalpy, 
h = cpT  static enthalpy;   symmetric tensor of viscous stresses, related to strain velocity tensor s 
by linear dependency 

 

 =  s 

 

 Heat flux vector I is defined by expression 

 

I =  grad(T) + V 

 

System of equations (1) is closed by the equation of state and by dependencies of transport 
coefficients on temperature and pressure. In this work perfect gas model is used. 
Initial-boundary problem, formulated above, is solved numerically on basis of finite-volume method. 
For monotone difference scheme flux calculation in half-integer nodes is carried out on basis of 
Riemann problem solution. This problem comes to solution of nonlinear set of algebraic equations. 
For approximation of convective component of flux vectors in half-integer nodes monotone Godunov 
scheme and approximate Roe technique for Riemann problem solution are used. To increase 
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Fig 8. Computational normalized heat flux distributions: black – non-slippery, blue – m = 10-3, light 
blue – m = 10-2, red – m = -10-3, pink – m = -10-2 

4. Conclusions 

In this work numerical solution of axisymmetrical Navier-Stokes equations with mass addition to the 
boundary layer is carried out in order to study effect of ablation on heat transfer on the models of 
descent space vehicles. Peculiarities of flow fields for wide range of mass flow rates are studied. 
Comparison of heat flux distributions, obtained in this study, with experiment [1] and numerical 
investigations [5] is fulfilled. It is shown that at low values of mass addition experimental and 
numerical heat fluxes are in good agreement. But for higher values of mass addition numerical heat 
flux decreases much stronger than experimental one. This result can be explained by the fact that 
real mass addition values in experiment are less than indicated in the work [1]. 

The reported study was funded by RFBR according to the research project № 17-08-00969 (the 
problem statement and calculations) and was supported by the Russian Science Foundation project 
no. 17-79-10438 (computational technique development). 
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