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Abstract 

With the purpose of improving the validity and practicality of ground test data for flight vehicle design, 
a mapping model of the same structure under different boundary conditions is employed to predict the 
dynamic responses in the time domain. Unfortunately, the mapping model is difficult to solve by 
traditional mathematical methods. Therefore, a new approach is proposed by using Recurrent Neural 
Networks (RNNs) combined the Gated Recurrent Unit (GRU). This method is validated on different 
structures: a three-degree-of-freedom system and a thin plate. The training dataset is generated by 
numerical computation methods. The predicted results illustrate that this method has good learning 
and data prediction ability for stationary and non-stationary time sequences with 20% noise. The 
applications of this method in the aerospace field will be more mature and have bright prospects in the 
future. 

Keywords: Mapping model, Recurrent Neural Networks, Gated Recurrent Units, Time sequence 
prediction 

Nomenclature

𝑴 – Mass matrix 
𝑪 – Damping matrix 
𝑲 – Stiffness matrix 
𝑴𝒊 – Mass matrix of boundary 𝑖 
𝑪𝒊 – Damping matrix of boundary	𝑖 
𝑲𝒊 – Stiffness matrix of boundary	𝑖 
𝑭𝒊 – Load matrix of boundary	𝑖 
𝒙 – Time sequence-1 
𝒚 – Time sequence-2 
𝝋𝑰 𝝋𝑰𝑰 – Transfer matrix 

𝑧- – Coefficient vector 
𝜓-(𝑡) – Decision function 
𝒉34  – Output at layer 𝑙 in time	𝑡 
𝒉3467 – Output at layer 𝑙 − 1 in time 𝑡 
𝒉3674  – Output at layer 𝑙 in time 𝑡 − 1 
𝑯; – Initial state matrix  
𝐺𝑅𝑈34– GRU function at layer 𝑙 in time 𝑡 
𝑮𝑹𝑼 – Multi-layer GRU function 
 

1. Introduction 
Inertial Navigation System (INS) must be evaluated on the rocket sled, a high-speed ground test 
platform, before its service as presented in U.S. standard, which indicates that ground tests get more 
and more significant for flight vehicle design. Actually, it’s hard to simulate the real flight mechanical 
environment of flight vehicles in the laboratory, because of the boundary conditions. The problem how 
do we use the data from the ground test for predicting is becoming extremely serious. 
Traditionally, the engineers’ experiences play a decisive role in how to using data from one boundary 
condition to another, which will not output an exact predicted result on account of over-test or short-
test. Yan [1] established a mapping model of a structure under different boundary conditions from the 
fundamental dynamical equations. Then a machine learning method, named least square support vector 
machine (LS-SVM), was introduced to make predicting, and many successful applications in the 
aerospace field had been finished [2-4]. One shortcoming of this method is that it can only apply to 
deal with frequency domain signal, and can’t work well in the time domain although many improvement 
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measures have been adopted, like embedded dimension for increasing the learning features [3]. So it’s 
indispensable to extend this idea to the time domain, and this will be the main issue we discuss in this 
research. 
In the present work, we transform the problem mentioned above into time sequence prediction. As for 
considering the memory of time series, Recurrent Neural Network (RNN), one of the architectures of 
deep learning, is applied in this research. Gated Recurrent Unit (GRU) cell is adapted to replace the 
basic RNN cell to training longer time steps. Then several learning datasets about dynamics response 
of different structures, like three-degree-of-freedom system and thin plate, are calculated by numerical 
simulation methods. Finally, two RNN models are training repeatedly using training dataset and output 
the predicted values on test dataset in order to verify the validity and practicality of this method. 

2. Predicted Method 
2.1. Mapping Model 
In general, the fundamental dynamic equations of a linear structure under different boundary conditions 
(called as system-1 and system-2) can be formed as  

 (𝑴 +𝑴7)𝒙̈ + (𝑪 + 𝑪7)𝒙̇ + (𝑲 + 𝑲7)𝒙 = 𝑭7(𝑡)
(𝑴 +𝑴F)𝒚̈ + (𝑪 + 𝑪F)𝒚̇ + (𝑲 +𝑲F)𝒚 = 𝑭F(𝑡)

 (1) 

where the  𝑴, 𝑪 and 𝑲 represent the mass matrix, damping matrix and stiffness matrix of the basic 
structure, respectively. The basic structure is a structure that does not impose any external constraints. 
Matric 𝑴-, 𝑪- and 𝑲- (𝑖 = 1, 2) are generated by the appearance of structural boundaries. 𝑭𝒊(𝑡) (𝑖 =
1, 2) is the exciting force applied on the structures. 𝒙, 𝒙̇, 𝒙̈ and 𝒚, 𝒚̇, 𝒚̈ represent the displacement, 
velocity and acceleration of system-1 and system-2. 
Mathematically, differential equations can be solved by the superposition method in the modal space 

 
𝒙 = 𝝋I𝒛7
𝒚 = 𝝋II𝒛F (2)	

In engineering, the type and magnitude of the exciting force of the ground test should be  as close as 
possible to the real state. Therefore, force 𝑭𝟏(𝑡) will be equal to 𝑭𝟐(𝑡). Then the mapping model will 
be written as follows 

 𝜓-(𝑡) =
∑ 𝝋N,OP∙𝒛R,PS
PTR

∑ 𝝋NN,OP∙𝒛R,PS
PTR

 (3)	

where parameter 𝑛 is the modal quantity should be considered. 𝑖 represents a certain position on the 
structure. 𝜓-(𝑡) is a mapping function of position 𝑖 in the time domain. 𝜓(𝑡) is the collection of mapping 
functions, which can describe the relationship between the corresponding positions on system-1 and 
system-2. 
The Eq. 3 is so complicated that it becomes very difficult to solve. In order to work this problem out, 
the machine learning technology is introduced here. Traditional machine learning methods, such as 
Artificial Neural Networks (ANNs), Support Vector Machine (SVM) and Decision Tree (DT), have inherent 
limitations in solving time sequence problems. Because the mapping function is highly dependent on 
time, which means the function 𝜓-(𝑡) is change synchronously over time. Therefore, deep Recurrent 
Neural Networks (RNNs) is applied in this research.  
2.2. Deep Recurrent Neural Networks 
RNNs is a class of deep learning [5], which can extract, memory and forget the data information along 
the time direction. RNNs, once unfolded in time, can be seen as very deep feedforward networks in 
which the layer share the same weights.  
In theory, RNNs are absolutely capable of handling this problem when the data sequences are long. 
Sadly, in practice, RNNs don’t seem to be able to learn this because the backpropagated gradients 
either grow or shrink at each time step, so over many time steps they typically explode or vanish. The 
problem was explored in depth by Bengio et al [6], who found some pretty fundamental reasons why 
it might be difficult. Thankfully, a RNNs model with long short-term memory (LSTM) , which is first 
introduced by Hochreiter and Schmidhuber [7] in 1977, can be able to deal with long-term 
dependencies. Since then many LSTM variants have been introduced. Gated Recurrent Unit (GRU) 
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introduced by Cho [8] is a slightly more dramatic variation on the LSTM. It combines forget and input 
gates into a single “update gate”. It also merges the cell states and hidden states and makes some 
other changes. The resulting cell is simpler than standard LSTM cell and will be employed in our research. 
the GRU architecture we used in this paper is shown in Fig. 1.  

 
Fig 1. Gated Recurrent Unit (GRU) cell.(This figure is referenced to the website: 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/) 
The vector formulas for this GRU cell forward pass can be written as: 

 

𝒓34 = 𝜎(𝑼Y
4 𝒉3467 +𝑾Y

4 𝒉3674 + 𝒃Y4 )									
𝒛34 = 𝜎(𝑼\

4 𝒉3467 +𝑾\
4 𝒉3674 + 𝒃\4 )									

𝒉]34 = 𝑡𝑎𝑛ℎ`𝑼a
4 𝒉3467 +𝑾a

4 𝒉3674 + 𝒃a4 b
𝒉34 = (1 − 𝒛34 )⨀𝒉3674 + 𝒛34⨀𝒉]34 													

 (4)	

where 𝑡 and 𝑙 represent the time step and hidden layer number, respectively. 𝑁 is the number of 
neurons in LSTM cell and 𝑀 the dimension of inputs. The dimension of the input weight matrices is 
𝑼 ∈ ℝi×k , and recurrent weight mateix is 𝑾 ∈ ℝi×i. 𝒃  represent the bias. 
The Eq. 4 can be replaced by a function 𝐺𝑅𝑈34. There are two input variables, the output of GRU layer 
𝑙 − 1 at time 𝑡 and output of GRU layer 𝑙 at time 𝑡 − 1. 
 𝒉34 = 𝐺𝑅𝑈34(𝒉3467, 𝒉3674 ) (5)	

In general, a deep learning model with more hidden layers will perform better. We use three RGU layers 
in this paper, and the deep RNN model is shown in Fig. 2. In this way, the dynamic response 𝒚 can be 
predicted with the formula as follows 
 𝒚 = 𝑮𝑹𝑼(𝒙,𝑯;) (6)	

 
Fig 2. Three-GRU-layer recurrent neural network. 
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The Backpropagation Through Time (BPTT) algorithm is applied here to train our deep RNN model. The 
core of BPTT comes from the backpropagation algorithm by Hinton et al. [9] in 1986. Some detail 
information about the history of RNN and how to build and train it can refer to the literature [10].  

3. Validations 
3.1. 3DOF system 
We assume two kinds of boundary conditions of 3DOF system as the Fig. 3 shows, and making a 
prediction of response from system-I to system-II. The mass matrix, damping matrix and stiffness 
matrix can be calculated as follows 

 

𝑴 = n
𝑚7

𝑚F
𝑚p

q 𝑪 = r
𝑐F −𝑐F 0
−𝑐F 𝑐F + 𝑐p −𝑐p
0 −𝑐p 𝑐p

u 𝑲 = r
𝑘F −𝑘F 0
−𝑘F 𝑘F + 𝑘p −𝑘p
0 −𝑘p 𝑘p

u

𝑴7 = 𝟎𝟑×𝟑 𝑪7 = n
𝑐7

0
𝑐y
q 𝑲7 = n

𝑘7
0

𝑘y
q

𝑴F = 𝟎𝟑×𝟑 𝑪F = r
𝑐7

0
0
u 𝑲F = r

𝑘7
0

0
u

 (7)	

 
Fig 3. Three-degree-of-freedom system under two boundary conditions.  

Where 𝑚7 = 5Kg , 𝑚F = 3Kg , 𝑚p = 1Kg , 𝑘7 = 𝑘F = 𝑘p = 5000N/m  and 𝑐- = 2𝑘-(𝑖 = 1, 2,3) . Three 
different random forces are applied to each mass block, and 10000 sets of displacement response data 
are generated with sample frequency 100 Hz. The dataset is split into three parts: 80% for training 
(training dataset), 10% for validation (validation dataset) and 10% for testifying (test dataset).  We 
monitor the loss on the validation dataset (called validation loss) after each training epoch is finished. 
The initial learning rate is 0.005, and it will be decreased by a factor of 10 if the validation loss is not 
reduced after 15 epochs. The training program will be stopped if the validation loss is not reduced after 
30 epochs. The hidden neurons are 256 per GRU layers. Mean square error (MSE) is selected as the 
loss function, and deep RNN models are trained by Adam optimizer [11]. The size of each mini batch 
is 512, which can be set larger but restricted by GPU memory. Finally, the training processing is stopped 
when the epochs is up to 1522. The loss curve on training dataset and validation dataset is shown in 
Figure 4. 
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Fig 4. Loss history on training and validation dataset 

In order to satisfy real engineering requirements, different levels of noise are added to the simulation 
data. The operation of adding noise is implemented by Eq. 8. The predicted results of four examples 
with 20% noise is demonstrated in Fig. 5. The figure shows a good predictive performance of the deep 
GRU model. In order to quantify the performance of the model, a criterion is introduced here called 
Root Mean Square Error (RMSE), as shown in Eq. 9. The mean RMSE, the Maximum RMSE, the minimum 
RMSE and the standard deviation of RMSE is listed in Table 1. It suggests that predictive accuracy 
decreases as the noise level increases. But the error can still be accepted in engineering applications. 

 𝒚��-�� = 𝒚 + 𝑛𝑜𝑖𝑠𝑒_𝑙𝑒𝑣𝑒𝑙 × �7
�
∑ 𝑦3F�
3�7 × 𝒓𝒂𝒏𝒅(−1, 1) (8)	

 RMSE =
�R�∑ (��6���)��

�TR

�R�∑ ��
��

�TR

× 100% (9)	

 
Fig 5. The predicted results of four examples on the test dataset (20% noise). 

Table 1. Comparison of errors at different noise levels. 

Noise level 
Mean RMSE 

(%) 
Max RMSE 

(%) 
Min RMSE 

(%) 
RMSE Std. 

(%) 
0% 1.74 8.61 0.78 0.66 

5% 4.03 9.20 2.16 0.80 

10% 7.42 13.10 3.98 1.43 

15% 10.93 19.24 5.86 2.12 

20% 14.48 25.61 7.77 2.82 

3.2. Thin plate 
In this case, a linear thin plate with two different boundary conditions is studied. One is fixed on one 
side and the other is fixed on four sides, shown in Fig. 6. The dataset, training strategy and parameters 
of deep GRU model are the same as Section 3.1. It should be noted that this dataset is non-stationary, 
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which can’t be predicted by frequency-domain methods. A well-training model was determined when 
the epochs are up to 1967. The predicted results of four examples with 20% noise is demonstrated in 
Fig. 7. The mean RMSE, the Maximum RMSE, the minimum RMSE and the standard deviation of RMSE 
is listed in Table 2. The same results are obtained as the 3DOF structure, but the all errors are larger 
than the previous ones. The cause of this phenomenon may be that the model does not converge to a 
sufficiently low error level, or this deep RNN architecture isn’t suitable for this structure, or the amount 
of training data is not large enough. Now, it is hard to make a convincing explanation for this. 
Subsequently, we compare the predictions with the real acceleration sequence in the frequency domain, 
as shown in Fig. 8. It can be suggested that the predicted PSD curve has a low degree of coincidence 
in the low-frequency band while has a high degree of coincidence in the rest. Therefore, we have 
enough confidence that the results obtained by this prediction method are of engineering practical 
significance. 

 
Fig 6. Linear thin plate under two boundary conditions.  

 
Fig 7. The predicted results of four examples on the test dataset (20% noise). 

 
Fig 8. PSD comparison of one example on the test dataset (20% noise). 

Table 2. Comparison of errors at different noise levels 

Noise level 
Mean RMSE 

(%) 
Max RMSE 

(%) 
Min RMSE 

(%) 
RMSE Std. 

(%) 
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0% 7.65 20.31 3.37 2.00 

5% 9.87 24.68 4.16 2.50 

10% 14.45 48.19 5.29 4.31 

15% 19.78 71.56 6.88 6.47 

20% 25.40 94.59 8.70 8.67 

4. Conclusions 
 With the fundamental dynamic equations, mapping model in the time domain has been introduced. A 
new method using Recurrent Neural Network with GRU cell to get an approximate expression of the 
mapping function under the statistical sense has been proposed. The proposed deep RNN technique is 
verified on two structures: a three-degree-of-freedom system and a thin plate. In general, the predictive 
accuracy and difficulty of training mainly depend on the architecture of deep learning model, the 
complexity of structures and scale of the training dataset. It is worth noting that the machine learning 
models used in this paper are not surely best and still have some room for optimization, like using auto 
machine learning [12]. In short, the predicted error of each case satisfies the engineering application 
requirements and shows that the proposed method have good learning and data prediction ability for 
stationary and non-stationary time sequence. 
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