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Abstract

A simple extending strategy is presented to improve the efficiency and accuracy of the state-of-the-art
high order TENO schemes [1]. The presented method applies the smooth measurement of TENO to
detect the position of discontinuity and then uses a polynomial selection procedure to directly apply
spatial reconstruction of high-order accuracy, without crossing any discontinuity. Especially, neighbour-
ing grid points contained in smooth stencils is also applied in spatial reconstruction to increase the
order of polynomials, and thus the accuracy is improved with little extra computational cost. Since
the reconstruction crossing discontinuity is completely avoided, ENO-property is attained. Numerical
simulations including scalar equation and Euler equations are presented to testify the performance of the
new method. The presented method gives results of which the accuracy is of seventh-order in smooth
field, and the complexity of the method is similar to that of the fifth-order TENO.
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1. Introduction

The spatial solutions of flow field containing discontinuities are extremely challenging, because of the
nonlinear essential of the governing equations. Especially, achieving high-order accuracy on smooth flow
field including critical points and eliminating oscillation near discontinuities are two crucial issues that
are attracting attentions, due to their necessities as well as their difficulties. Without stressing the details
here, we only need to recall the fact that high-order interpolation will produce spurious oscillation near
discontinuities, leading to troublesome problems such as positivity issues and erroneous solutions.

In order to solve those problems, various methodologies have been developed. Recently, Targeted ENO
(TENO) schemes have been invented by Fu et al. [1]. Instead of reducing the contribution of oscillatory
stencils by the nonlinear weighting strategy of WENO schemes, TENO schemes completely remove the
oscillatory stencils in the final reconstruction, and fully recover the background linear scheme if all the
candidate stencils are deemed to be smooth. So far, various numerical results including turbulence
flows [12], multi-phase flows [13] and detonations [14], have proved that TENO schemes are accurate
and robust. Most importantly, TENO schemes, in fact, give a new way to fully discard the weighting
procedure [15], facilitating the utilization of the candidate stencils and the development of higher-order
schemes.

Usually, in order to increase the order of accuracy of a specific numerical scheme, more degree-of-
freedoms (DOFs) are necessary for constructing higher-order polynomials. For finite difference schemes
such as WENO or TENO, more DOFs are usually given by extending the candidate stencil(s). For
example, instead of using three three-point stencils in a five-point WENO scheme, the seven-point WENO
scheme uses four four-point stencils [16]. At the meantime, more complicate smoothness indicators are
required for measuring oscillation and calculating the nonlinear weights, leading to higher computational
cost. Since TENO schemes are developed to function as a discontinuity-location detector [15] and the
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high-order polynomial can be calculated separately, simpler smoothness indicators could be used for
implementing higher-order spatial approximation, reducing computational cost.

Therefore, an extending strategy based on the TENO framework is given in this work. The following
sections are organized as follows. In the next section, WENO and TENO schemes are briefly introduced,
and especially the ENO-like stencil-selection procedure is specifically introduced for introducing following
discussions. In section 3, the recent development in [15] is briefly introduced. In section 4, the presented
method is introduced in detail. In section 5, several typical numerical cases are used to examine the
performance of the presented method. Finally, the concluding remarks are given in the last section.

2. Hyperbolic conservation law and TENO schemes
The one-dimensional hyperbolic conservation law is used to briefly introduce the basic idea of TENO
schemes.

2.1. The fundamental of the finite-difference solution

The one-dimensional hyperbolic conservation law is written as

∂u
∂ t

+
∂ f (u)

∂x
= 0, (1)

in which the characteristic velocity is ∂ f (u)
∂u and assumed to be positive, without loss of generality. Here,

the spatial discretization of Eq.(1) is given on an equally spaced one-dimensional mesh, leading to an
ODE (ordinary differential equation) system, i.e.

dui

dt
=−∂ f

∂x
|x=xi , i = 1, · · · ,n. (2)

The partial derivatives in x-direction are approximated by using the finite difference formula, i.e.

dui

dt
=− 1

∆x
(hi+1/2 −hi−1/2). (3)

The flux function hi±1/2 at half points can be implicitly defined by

f (x) =
1

∆x

∫ x+∆x/2

x−∆x/2
h(ξ )dξ , (4)

and the semi-discretized form can be written as

dui

dt
≈− 1

∆x
( f̂i+1/2 − f̂i−1/2), (5)

where the numerical flux functions f̂i±1/2 are calculated from the convex combination of r candidate-
stencil fluxes

f̂i±1/2 =
r−1

∑
k=0

ωk f̂k,i±1/2. (6)

In order to obtain a (2r−1)-order approximation for flux functions f̂i±1/2, the (r−1)-order interpolation
on each candidate stencil is given as

h(x)≈ f̂k(x) =
r−1

∑
l=0

al,kxl , (7)
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where the coefficients al,k can be calculated by substituting Eq.(7) into Eq.(4) and solving the resulting
linear algebraic system.

By applying the spatial approximation of the flux function, the temporal differential term in the ODE
system, i.e. Eq.(2), can be solved by using the third-order strongly stable Runge-Kutta method [17], but
the detailed formula is omitted for simplicity.

2.2. Canonical WENO schemes

The fifth-order WENO-JS scheme [4] is very popular ever since it was invented, and higher-order schemes
[16] are developed based on the JS weights. For the fifth-order WENO-JS scheme, of which r = 3, two-
degree polynomial approximation of the numerical flux function can be given as

f̂k(x) = a0,k +a1,kx+a2,kx2, k = 0,1,2. (8)

Specifically, the numerical flux functions of the candidate stencils for the approximation at grid half
point i+ 1

2 are

f̂0,i+1/2 =
1
6
(2 fi−2 −7 fi−1 +11 fi),

f̂1,i+1/2 =
1
6
(− fi−1 +5 fi +2 fi+1),

f̂2,i+1/2 =
1
6
(2 fi +5 fi+1 − fi+2).

(9)

The error of the approximation in Eq.(9) can be obtained by Taylor expansion analysis, i.e.

f̂k,i+1/2 = hk,i+1/2 +Ck∆x3 +O(∆x4), (10)

where Ck is a constant which is independent of ∆x but related to specific candidate stencils.

The weight of each numerical flux function of a candidate stencil, i.e. Eq.(6), is defined as

ωk =
αk

∑r−1
k=0 αk

, αk =
dk

(βk + ε)q . (11)

The optimal linear weights dk of fifth-order WENO schemes are

d0 = 0.1, d1 = 0.6, d2 = 0.3, (12)

which will generate the fifth-order background linear scheme on a five-point full stencil, and ε = 10−6 is
the small value avoiding zero denominator. It should be noticed that the small value also acts as a cutoff
of the smoothness measurement [18], and has been modified to avoid overwhelming small measurements
[6]. The exponent is usually defined as q = 2.

The nonlinear weights in Eq.(11) is essential to suppress the oscillations crossing discontinuities, ensuring
the essentially non-oscillatory property. In general, the nonlinear weights corresponding to oscillatory
stencils will be decreased, approximately removing the contribution of those stencils. Therefore, it is
crucial to measure the smoothness of the flow field. The local smoothness indicator βk,r in the nonlinear
weights determines the smoothness of each stencil to the final high order reconstruction, and is defined
following Jiang and Shu [4], as

βk,r =
r−1

∑
j=1

∆x2 j−1
∫ xi+1/2

xi−1/2

(
d j

dx j f̂ (x)
)2

dx. (13)

HiSST 2018-xxxx
A Simple Extending strategy for TENO

Page | 3
Copyright © 2018 by the author(s)



HiSST: International Conference on High-Speed Vehicle Science Technology

Jiang and Shu [4] gave the explicit form of the local smoothness indicator βk,r=3 of fifth-order schemes
in terms of the numerical flux function fi, i.e.

β0 =
1
4
( fi−2 −4 fi−1 +3 fi)

2 +
13
12

( fi−2 −2 fi−1 + fi)
2,

β1 =
1
4
( fi−1 − fi+1)

2 +
13
12

( fi−1 −2 fi + fi+1)
2,

β2 =
1
4
(3 fi −4 fi+1 + fi+2)

2 +
13
12

( fi −2 fi+1 + fi+2)
2,

(14)

where the subscript r is omitted for simplicity.

2.3. TENO schemes

Two features of TENO schemes are more essential for introducing the method in this article. Firstly, the
stencils of incrementally increasing width, with which arbitrary high-order spatial accuracy are achieved
under TENO framework, are introduced. Secondly, the ENO-like stencil-selection procedure that ensures
recovering the background linear schemes is a necessity needed to be introduced.

2.3.1. Incremental-width stencils

The candidate stencils of the fifth-order TENO scheme are the same as those of WENO schemes. How-
ever, incrementally increasing width stencils are used in higher-order TENO schemes. For attaining
seventh-order spatial accuracy on a seven-point full stencil, TENO schemes use two four-point stencils,
in addition to the three three-point stencils of the fifth-order TENO scheme. The stencils are schemat-
ically shown in Fig.1(b). The seventh-order WENO schemes use four four-point stencils, as shown in
Fig.1(a), and in a very high order WENO scheme, the large sub-stencils enhance encounters of interact-
ing characteristics, requiring specific treatment to avoid nonexistence of a smooth stencil [19]. On the
other hand, TENO schemes are more suitable to deal with closely located shock waves such as those in
compressible turbulence problem.

(a) The candidate stencils of seventh-order WENO
schemes

(b) The candidate stencils of the seventh-order TENO
scheme

Fig 1. Schematics illustrating the candidate stencils of seventh-order WENO and TENO schemes.

The details of seventh-order or even higher order TENO schemes, including the construction of candidate
stencils and the optimal linear weights of those stencils, were introduced in [1] and are not further
discussed here.

2.3.2. ENO-like stencil-selection procedure

The ENO-like stencil-selection procedure helps TENO schemes separating the shock/discontinuity-detection
and high-order spatial reconstruction, allowing significant flexibility.

Motivated by Borges et al. [6] and Hu et al. [20] , the smoothness measurement of TENO schemes with
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K-point full stencil is given as

γk =

(
C+

τK

βk,r + ε

)q

, k = 0, · · · ,K −3. (15)

The local smoothness indicator βk,r is the same as those in WENO schemes. The global reference
smoothness indicator τK was detailed in [1], and for the fifth-order TENO scheme τ5 is reused from
WENO-Z scheme. The small threshold is defined as ε = 10−40. C is set as 1, and the integer power q is
set as 6. As introduced by Fu et al. [1], larger integer power exponent q and smaller C are preferable for a
stronger separation between resolved and non-resolved scales, and the discontinuity-detection capability
can be significantly enhanced.

TENO schemes do not directly use Eq.(15) to give the final weights. Instead, the smoothness measure-
ment in Eq.(15) is normalised at first, i.e.

χk =
γk

∑K−3
k=0 γk

, (16)

and then a cut-off procedure is defined as

δk =

{
0, if χk <CT ,

1, otherwise.
(17)

Finally, the weights of TENO scheme are defined by a normalizing procedure

ω(T )
k =

dkδk

∑K−3
k=0 dkδk

, (18)

where the optimal weights are utilised without rescaling, and only the stencil deemed to be containing
discontinuity is removed from the final reconstruction completely. Therefore, the numerical robustness of
TENO scheme can be ensured, and the optimal weight, dk, as well as the accuracy and spectral properties
is fully recovered in smooth regions.

3. Exploring TENO schemes as shock-detectors
As introduced in [15], TENO schemes can be acting as a shock-detection-stencil-selection procedure.
In [15], six-point and eight-point TENO schemes are discussed, and the hierarchical voting strategy
reduces the number of possible combinations in the stencil-selection process. In this section, the five-
point TENO scheme is discussed following the idea in [15], to facilitate the introduction in the following
sections.

AWENO scheme uses continuous nonlinear weight to calculate convex combinations. Therefore, there are
infinite possible combinations since the weights are calculated by continuous function. Whereas, TENO
schemes in fact only implement several combination of the candidate stencils, by the nonlinear ENO-like
stencil selection procedure in Eq.(17). For the fifth-order TENO scheme, which has three stencils as
shown in Fig.2, potential combinations include {S0,S1,S2}, {S0,S1}, {S1,S2}, {S0,S2}, and {Sk} if other
two stencils are both crossing discontinuity, as shown in Fig.2(b). Especially, for each candidate stencil
Sk, there are only two potential choices of the weight, i.e. {dk,0}, before the normalization procedure in
Eq.(18).

Obviously, the numerical flux as Eq.(6) is constructed based on a combination of candidate stencils and
can be represented as a single high-order polynomial, resulting the fifth-order upwind central scheme
({S0,S1,S2}) or the four-point schemes ({S0,S1} or {S1,S2}), etc. Numerically, using these single high-
order polynomial reconstructions is equivalent to the original TENO scheme, discarding the weighting
procedure completely. Therefore, the equivalent numerical fluxes of the fifth-order TENO scheme eval-
uated at xi+1/2 are given as

f̂ ∗m,i+1/2 = am,i−2 fi−2 +am,i−1 fi−1 +am,i fi +am,i+1 fi+1 +am,i+2 fi+2, (19)
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(a) A central stencil crossing disconti-
nuity

(b) Two candidate stencils crossing dis-
continuity

Fig 2. Candidate stencils of a five-point (W/T)ENO scheme in the spatial approximation at xi+ 1
2
.

Table 1. The coefficients of the equivalent single polynomial spatial reconstructions.
if δ0,1,2 = f̂ ∗m,i+1/2 S∗

m am,i−2 am,i−1 am,i am,i+1 am,i+2

1,1,1 f̂ ∗0,i+1/2 S∗
0 1/30 -13/60 47/60 9/20 -1/20

0,1,1 f̂ ∗1,i+1/2 S∗
1 0 -1/9 2/3 1/2 -1/18

1,1,0 f̂ ∗2,i+1/2 S∗
2 1/21 -13/42 41/42 2/7 0

0,0,1 f̂ ∗3,i+1/2 S∗
3 0 0 1/3 5/6 -1/6

0,1,0 f̂ ∗4,i+1/2 S∗
4 0 -1/6 5/6 1/3 0

1,0,0 f̂ ∗5,i+1/2 S∗
5 1/3 -7/6 11/6 0 0

1,0,1 f̂ ∗6,i+1/2 S∗
6 1/12 -7/24 17/24 5/8 -1/8

where the subscript m is used for numbering the polynomials and distinguishing to the stencils using
subscript k which relates to the local smoothness indicators. The coefficients of these polynomials are
given in Table 1.

Here, f̂ ∗m,i+1/2 is constructed on S∗m shown in Fig.3. Thereinto, f̂ ∗6,i+1/2 constructed on stencil S∗6 is
equivalent to the numerical flux constructed based on the combination of {S0,S2}, but it is not an actual
continuous reconstruction or of fifth-order of accuracy.

It should be mentioned explicitly, only one numerical flux f̂ ∗m,i+1/2 needs to be be selected in the spa-
tial reconstruction, equivalently representing a weighted averaged numerical flux of the original TENO
scheme. This explanation brings flexibility to independently define the smoothness measurement and
the spatial reconstructions, leading to more further possibilities.

Fig 3. Schematic of the equivalent candidate stencils of the fifth-order TENO scheme. The circle
indicates that the stencil is not really continuous.
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Fig 4. The neighbouring smoothness measurement to be explored.

4. The presented method

4.1. Exploiting neighbouring smoothness information

For TENO schemes, it is unnecessary to provide exact relative smoothness of each candidate stencil in
constructing high-order polynomials. Examining the discontinuity-detection issue in the whole spatial
field, it could be found that all the discontinuities can be effectively detected by using the smoothness
measurement of the fifth-order TENO scheme [14]. In other word, the smoothness measurement works
sufficiently well to provide the smoothness information of the whole field, as least in those typical gas
dynamic problems. Therefore, if all the discontinuities are successfully detected, it might be possible to
achieve arbitrary high-order interpolation as long as there is a sufficiently large smooth region.

However, the smoothness information can not be directly used in current frameworks. As shown in Fig.4,
one may notices that in a five-point WENO or TENO scheme approximating the variables at xi+1/2, only
the information based on βi,0, βi,1 and βi,2 can be applied to determine discontinuities or smooth field,
and achieving fifth-order accuracy is the best result in this context, even the neighbouring five-point full
stencils are all smooth.

It is obvious that the three five-point full stencils in Fig.4 cover the the same region as the seventh-order
TENO scheme, and thus we can investigate this case. Examining the three five-point full stencils in
Fig.4, one may find that they are overlapping with each other. Therefore, it is highly possible that one
discontinuity is detected by more than one five-point full stencil. Examining the candidate stencils of
the seventh-order TENO scheme, as shown in Fig.1(b), it is obvious that the candidate stencils of the
fifth-order TENO scheme are included. As known, the leading term of the local smoothness indicator βi,k
is of O(∆x2) if the corresponding stencil is smooth. Otherwise, if a discontinuity is located in a certain
stencil, the corresponding βi,k is of O(1), invoking the ENO-like stencil-selection procedure.

Therefore, in order to show the capability of the neighbouring smoothness measurement in providing
effective information for constructing a higher-order approximation at xi+1/2, following remarks are giv-
en.

Remark 1. Examining Figs.1(b) and 4, if a discontinuity is located within the range of the central five-
point full stencil, one of the local smoothness indicators of the five-point full stencil or at least one of the
local smoothness indicators of the seventh-point full stencil will be of O(1). If a discontinuity is located
within the range of the seven-point full stencil, but outside the range of the central five-point full stencil,
one of the local smoothness indicators of the neighbouring five-point full stencil or the seventh-point full
stencil will be of O(1). Eventually, the discontinuity can be located accurately by using either the three
five-point smoothness measurements in Fig.4 or the seven-point smoothness measurement in Fig.1(b).
�
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Remark 2. Regarding to attaining designed order of accuracy, the ENO-like selection procedure helps to
give a relaxed condition [12] as

τi,5

βi,k + ε
= O(∆xs), s > 0, (20)

where τi,5 = |βi,0 − βi,2|. This is the condition required for TENO schemes to restore the formal or-
der of accuracy in smooth regions. In fact, as aforementioned, using Eq.(15) significantly enhances
discontinuity-detection capability of the smoothness measurement, and the ENO-like stencil-selection
procedure directly applies those optimal linear schemes, except for those oscillating stencils where dis-
continuities are located, i.e. where χk <Ct . �

Remark 3. In hyperbolic system equations, e.g. Euler equations, characteristic-wise reconstruction is
necessary to avoid oscillation [16]. Therefore, the matrix L which is the left eigenvectors of the Jacobian
matrix A = ∂F

∂U should be used to calculate the characteristic variables, i.e.

Ql = Li+1/2 ·Ul , i−2 ≤ l ≤ i+2. (21)

To be clear, here F and U are the numerical flux and the conservative variables of the hyperbolic system
equations, respectively.

It is unnecessary to detail the characteristic-wise reconstruction procedure. However, it does need to no-
tice that the three five-point smoothness measurements in Fig.4 are calculated based on the characteristic
variables calculated using different Jacobian matrices, i.e. Ai−1/2, Ai+1/2 and Ai+3/2. Luckily, in smooth
field, the difference of linearised matrix A, i.e. ∆A, is of O(∆x), and thus the characteristic variables
calculated using L′ = L+∆L does not change the essential property of the smoothness measurement.
�

Eventually, for the one-dimensional field as shown in Fig.4, two neighbouring stencils are utilised in
calculating the numerical flux at xi+ 1

2
. A binary vector storing the information of local smoothness is

then given as
∆i = (δi−1,0,δi,0,δi,1,δi,2,δi+1,2). (22)

4.2. Higher-order spatial reconstructions

In the last subsection, based on the smoothness measurement of the five-point TENO scheme, a method
providing extra smoothness information is given, and thus higher-order polynomials can be used in
the smooth region. In [15], predefined optimal linear schemes are implemented as candidate spatial
reconstructions. A similar idea is given as follows.

Here, up to seventh-order candidate reconstructions are given, directly using two extra neighbouring
points of five-point schemes. Similar to Eq.(19), all the numerical fluxes evaluated at xi+1/2 are given as
an unified form,

f̂ ∗∗m,i+1/2 =
i+3

∑
l=i−3

am,l fl , (23)

and the coefficients are given in Table 2.

Examining these coefficients, compared with the stencils in Fig.3, we can simply find that apart from
the original high-order representatives, the presented method exploits several higher-order polynomials,
including the seventh-order polynomial f̂ ∗∗0,i+1/2, sixth-order polynomials f̂ ∗∗1,i+1/2 and f̂ ∗∗2,i+1/2, and also
two more fifth-order polynomials, i.e. f̂ ∗∗3,i+1/2 and f̂ ∗∗5,i+1/2, as well as two forth-order polynomials f̂ ∗∗6,i+1/2

and f̂ ∗∗9,i+1/2. All these newly introduced high-order reconstructions are constructed with using the two
extra neighbouring points. At the mean time, the coefficients of f̂ ∗∗7,i+1/2 and f̂ ∗∗8,i+1/2 are different to
those forth-order polynomials in Table 1, even they are using the same stencils. This is because the
coefficients in Table 1 are calculated using the optimal linear weights in Eq.(12), after the ENO-like
selection. Moreover, the stencil, S∗6, is discarded since it is in fact crossing a central discontinuity.
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Table 2. The coefficients of the numerical flux functions of the presented method.
f̂ ∗∗m,i+1/2 am,i−3 am,i−2 am,i−1 am,i am,i+1 am,i+2 am,i+3

f̂ ∗∗0,i+1/2 -1/140 5/84 -101/420 319/420 107/210 -19/210 1/105
f̂ ∗∗1,i+1/2 0 1/60 -2/15 37/60 37/60 -2/15 1/60
f̂ ∗∗2,i+1/2 -1/60 7/60 -23/60 19/20 11/30 -1/30 0
f̂ ∗∗3,i+1/2 0 0 -1/20 9/20 47/60 -13/60 1/30
f̂ ∗∗4,i+1/2 0 1/30 -13/60 47/60 9/20 -1/20 0
f̂ ∗∗5,i+1/2 -1/20 17/60 -43/60 77/60 1/5 0 0
f̂ ∗∗6,i+1/2 0 0 0 1/4 13/12 -5/12 1/12
f̂ ∗∗7,i+1/2 0 0 -1/12 7/12 7/12 -1/12 0
f̂ ∗∗8,i+1/2 0 1/12 -5/12 13/12 1/4 0 0
f̂ ∗∗9,i+1/2 -1/4 13/12 -23/12 25/12 0 0 0
f̂ ∗∗10,i+1/2 0 0 0 1/3 5/6 -1/6 0
f̂ ∗∗11,i+1/2 0 0 -1/6 5/6 1/3 0 0
f̂ ∗∗12,i+1/2 0 1/3 -7/6 11/6 0 0 0

Table 3. The coefficients of the numerical flux functions of the presented method. (* indicates 1 or 0)
∆i = f̂ ∗∗m,i+1/2 ∆i = f̂ ∗∗m,i+1/2

(1,1,1,1,1) f̂ ∗∗0,i+1/2 (∗,0,1,1,0) f̂ ∗∗7,i+1/2

(0,1,1,1,1) f̂ ∗∗1,i+1/2 (0,1,1,0,∗) f̂ ∗∗8,i+1/2

(1,1,1,1,0) f̂ ∗∗2,i+1/2 (1,1,0,0,∗) f̂ ∗∗9,i+1/2

(∗,0,1,1,1) f̂ ∗∗3,i+1/2 (∗,∗,0,1,0) f̂ ∗∗10,i+1/2

(0,1,1,1,0) f̂ ∗∗4,i+1/2 (∗,0,1,0,∗) f̂ ∗∗11,i+1/2

(1,1,1,0,∗) f̂ ∗∗5,i+1/2 (0,1,0,0,∗) f̂ ∗∗12,i+1/2

(∗,∗,0,1,1) f̂ ∗∗6,i+1/2 (∗,0,0,0,∗) no exist

Eventually, we can find the basic features of the presented method. Firstly, all the final reconstructions
do not cross any discontinuity. In fact, WENO schemes or the TENO schemes before [15] are possible
to calculate the final approximation using the numerical fluxes in both sides of a discontinuity. For
example, in Fig.2(a), the central stencil could be discarded but the other two stencils could be applied.
Secondly, the presented method is also suitable to deal with multiple closely located shocklets, because
the polynomial constructed on a smaller stencil could be applied in such case.

4.3. The stencil-selection procedure

The TENO framework allows the separation of high-order spatial reconstructions and smoothness mea-
surement. For calculating the high-order polynomials introduced in the last subsection, the smoothness
information should be provided at first, which means that the local smoothness indicators, βi,k, as well
as the global smoothness indicators τi,5, should be readily available before the spatial reconstructions,
providing the binary vector in Eq.(22). In this work, the method calculating the local and global s-
moothness indicators is the same as that of the fifth-order TENO scheme, and thus the binary vector
storing smoothness information can be calculated trivially. The relation between this binary vector and
the implementation of the high-order reconstructions in Table 2 is then given in Table 3.

It should be noticed that there are 25=32 possible combinations of Eq.(22), and each of them is cor-
respondent to a numerical flux reconstruction, except that the three central smoothness indicators can
not be all oscillatory and reconstructions crossing discontinuity are completely avoided. Moreover, two
situations need to be further explained. First, if ∆i = (1,1,0,1,1), this is, theoretically, available for using
f̂ ∗∗6,i+1/2 and f̂ ∗∗9,i+1/2. However, considering that the numerical flux at xi+1/2 is to be evaluated, f̂ ∗∗6,i+1/2 is
used to make this evaluation an interpolation, instead of an extrapolation while using f̂ ∗∗9,i+1/2. Second,
similar to the first case, ∆i = (1,1,0,1,0) is correspondent to f̂ ∗∗10,i+1/2, instead of f̂ ∗∗9,i+1/2.

By exploring the ENO-like selection procedure, a wider stencil can be used without amending the original
five-point smoothness measurement. As mentioned in the beginning of this subsection, the smoothness
measurement of the whole computation domain should be calculated before the spatial reconstruction, for
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providing the neighbouring smoothness information, and the smoothness information should be stored
in the calculation of f̂i±1/2.

4.4. A further improvement for solving scalar equations

In order to further improve the efficiency of solving scalar equations, which does not require the complex
calculation of characteristic-wise variables, we redefine the local smooth indicators as

βi =
1
4
( fi−1 − fi+1)

2 +
13
12

( fi−1 −2 fi + fi+1)
2, (24)

and

β0 = βi−1,

β1 = βi,

β2 = βi+1.

(25)

Then the following procedure can follow that of TENO schemes. Comparing with the smoothness
measurement in Fig.4, the computational cost will significantly reduced. The simplified scheme is then
denoted as TENO5-SE.

5. Numerical results

5.1. Approximate dispersion relation analysis

Approximate dispersion relation (ADR) analysis [22] is performed at first. As shown in Fig.5, TENO
schemes and the presented methods show agreement with the background linear schemes in low and
intermediate wave number. In high wave number region, the results of the nonlinear schemes deviate from
the results of the background linear schemes. Especially, the TENO-E methods which use the smoothness
measurement of the fifth-order TENO scheme, deviates from the seventh-order linear scheme at the same
wave number which causes deviation between the fifth-order TENO scheme and its background linear
scheme.
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Fig 5. The approximate dispersion and the dissipation properties of the presented method.

5.2. One-dimensional linear advection problem

A scalar linear advection problem having a smooth field is then applied in this section. The equation to
be solved is

∂u
∂ t

+
∂u
∂x

= 0, (26)
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and the initial condition is
u0(x) = e−300(x−xc)

2
, xc = 0.5. (27)

Periodic boundary condition is used to model the infinite one-dimensional scalar field. The solution at
t = 1 and between x= 0 and x= 1, which is one period of the solution, is investigated with using uniformly
refined spatial discretization, and the time steps are sufficiently refined to achieve the convergence of
temporal solutions.

In Fig.6, the L1 and L∞ error of several schemes are presented. It is shown that except for coarse
discretizations, the resolution and accuracy of TENO schemes and the presented methods are the same
as those of the linear schemes. Whereas, WENO-JS5 scheme is showing lower resolution, although its
convergence is also approximately fifth-order. WENO-JS7 scheme [16] does not achieve seventh-order
accuracy in this case. In general, it can be concluded that the presented schemes have indeed recovered
the background linear scheme in the smooth field.
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Fig 6. The convergence of the simulation of the 1D scalar linear advection problem.

5.3. Shock wave-density wave interaction problem

In order to investigate the performance in resolving smooth critical points, a classical one-dimensional
test case in [24] is applied. In this case, a Mach 3 shockwave travels along the shock-tube, interacting
with sine wave in density. TENO scheme has shown superiority in this case [1]. Here, seven-point TENO
schemes and the presented method (TENO5-E) are used for comparison.

The computation domain is [−5,5], and discretized by 200 equidistant distributed grid points. The initial
condition is designed as

(ρ,u, p) =

{
(3.8571,2.6294,10.3333), if x ≤−4,

(1+0.2sin(5x),0,1), if x >−4,
(28)

Fig.7(a) shows the density distributions at t = 1.8 of the numerical results. The result of the five-
point WENO-JS scheme with using 2000 grid points is used as the reference result, since there is not a
theoretically exact solution.

It can be found that the presented method shows similar result in resolving smooth wave structure,
comparing with the TENO-7 scheme. We have also compared the results of WENO-JS-(5/7) and TENO-
5 schemes, and the advantage of the presented method will be more significant. Those results are not
shown for simplicity.
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Fig 7. The density distribution of shock-density wave interaction problem.

6. Conclusions

In this paper, simple extending strategies based on the smoothness measurement of the fifth-order TENO
scheme is introduced. Up to seventh-order accuracy is achieved without significant extra computation
effort.
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