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Abstract 

In the framework of three-dimensional Navier-Stokes equations, the influence of Mach waves (N-wave) 
on laminar-turbulent transition caused by the first mode in the boundary layer on a flat plate is studied 
numerically at the free-stream Mach number 2.5. In accord with the wind-tunnel experiment N-wave is 
induced by two-dimensional roughness on the computational domain boundary corresponding to the test 
section side wall.  It is shown that the disturbance induced in the boundary layer by the N-wave rear 
front, does not affect the transition onset but it shifts the nonlinear stage of the first mode evolution 
downstream. The disturbance induced by the N-wave fore front, shifts the transition onset upstream. 
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1. Introduction 

Laminar-turbulent transition (LTT) is substantially depends on free stream disturbances, which have 
different nature and spectral distribution in wind tunnels (WT) and in real flight conditions. For correct 
interpretation of wind tunnel results and LTT data transfer to real flight conditions study of typical 
disturbances in test section of WT and mechanisms of their interaction with boundary layer on the 
model surface are necessary. Main sources of disturbances in supersonic WT are turbulent boundary 
layer and roughnesses on the nozzle walls and test section [1]. Roughnesses lead to generation of 
weak shock waves (Mach waves), which penetrate into flow core.  These waves, interacting with 
model leading edges, excite disturbances in boundary layer, which may significantly influence on local 
heat fluxes, viscous friction coefficient and LTT position. Vaganov et al. ([2], [3]) investigated this 
type of disturbances in wind tunnel Т-325 at Mach number 2.5. Source of disturbances was 2D 
roughness (thin strip), located on the lateral surface of WT test section. As a rule, roughness height 
was much less than turbulent boundary layer on the WT wall. Nevertheless, Mach waves penetrate 
boundary layer and spread to flow core, generating N-wave, intensity of which several times more, 
than level of natural disturbances. As result of N-wave interaction with leading edge of the thin delta 
wing ([2], [3]) or plate in laminar boundary layer intensive disturbances of mass flow arise in low-
frequency part of the spectrum. Their mean-square level is 2.5 % on the flat plate with sharp leading 
edge and for the plate with blunted leading edge this level increases to 10%. 
Numerical investigations [4] show that profile of longitudinal mass flow in N-wave, obtained from 
steady solution of Navier-Stokes equations, show good agreement with the experiment.  
It can be assumed that distortions of mean (undisturbed) flow, generated by N-wave, may 
significantly influence on stability, and, as a consequence, on LTT in boundary layer. It is known from 
(LST) [5] that for non-compressible boundary layer on the flat plate only one unstable mode exists – 
Tollmien-Schlichting (TS) wave. Its analogue in supersonic boundary layer is referred to as the first 
mode according to Mack terminology [5]. In contrast to non-compressible boundary layer, where 2D 
TS waves have the maximum growth increments, for supersonic boundary layers 3D (oblique) waves 
are the most unstable. Thus, experiment and theory have to solve the problem of 3D unstable 
disturbances evolution.  
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Relative height of roughness ε = 0.01 is chosen according to the experiment [2]. Disturbances (2) are 
set as boundary conditions on the side face of computational domain, Z=Zmin, at X0=-233 mm and a 
= 20 mm. In calculation process steady disturbed flow field is found with high accuracy (residual is 
less than 10-10). In result weak N-wave is generated, which is schematically shown in “Fig. 2”. This 
disturbance develops along Mach lines, reaches the side boundary Z=Zmax and reflects from it. 

5. Boundary conditions for first mode excitation 

On the narrow region of the plate x1 < x < x2 boundary condition for normal to the wall mass flow 
component is set:  

( )' 0
( , 0, , ; , , ) ( ) ( )cos( )sin( ( ))
p p p

v x y z t A t v x z t tρ β ω φ β φ ω= = + −
   (3) 

2 1
1 2
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x x x
x x x x x

x x

− +
= ≤ ≤ ⇒ − ≤ ≤

−
,
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where x coordinate is measured from the leading edge of the plate, ϕ – is initial phase of the 
excitation. If ϕ = 0 excitation is distributed along z in a symmetrical way relative to line z = 0.  
Symmetry line can be shifted in transversal direction increasing ϕ. Excitation shape is given by 5th 
order polynomial  
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At initial time moment t0 excitation amplitude is switched on according to the law  

 
2( ) 1. exp( 2 )A t tλ ⎡ ⎤= − −⎢ ⎥⎣ ⎦ ,                                              (5) 

0
( ) / (2 )t t tω π= −  

   
 

in such a way that signal A(t) reaches the constant level λ after the first two periods of generator 
oscillations.  
Characteristics of the first mode are calculated using LST, and generator parameters are chosen, for 
which effective instability excitation takes place: ω = 164.66, β = 561.93. Central line coordinate of 
the generator is located at instability point of this wave: X0 = 37 mm. Dimensionless coordinates of 
generator boundaries are chosen in a following way:  

1 0 2 0 ,
/ 2, / 2, 2 /

TS TS TS TS r
x x x xλ λ λ π α= − = + =

 
where αTS,r(ω, β) = 305.46 – real part of the first mode eigenvalue, specifying longitudinal component 
of the wave vector. In dimension form λTS

*= 20 mm, X1 = 27 mm and X2 = 47 mm. Generator 
amplitude is chosen equal to λ = 0.1% in such a way that nonlinear breakdown occurs inside the 
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