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Abstract

Present paper is a two-step investigation of some benchmark problems in the field of
supersonic/hypersonic phenomena. The first step is concerned on the assessment of three Weighted
Essentially Non-Oscillatory (WENO) type numerical schemes for shock tube problems applied for
simple cases, like scalar conservation law. The idea is to objectively present the performances of
these numerical schemes covering a wider range of Riemann problems and not only on some specific
favourable cases as it is customary done in specialized literature. All the schemes identify accurate
the position of the shock and converge to the proper weak solution for non-linear flux and different
initial conditions. Next, the paper refers to the unsteady laminar or turbulent shock wave/boundary
layer interactions over compression ramps with a sharp leading edge. The in-house code that has
been developed (SUPERHYP) solves the time-dependent conservation law form of the RANS/LES
equations. This code is Fortran parallel code with a graphical interface to survey the solution during
run. The spatial discretization involves a finite-volume approach. Upwind-biasing is used for the
convective and pressure terms, while central differencing is used for the shear stress and heat
transfer terms. Time advancement strategy allows solving steady or unsteady flows. Grids must be
supplied, but a mesh generator for simple geometries is included in the package
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1. Introduction

It is a well-known fact that numerical simulations, especially DNS and LES, require high resolution
discretization techniques in both space and time domains. One major challenge in applying these
techniques is the constant pursuit for reducing the numerical dispersion and diffusion bellow the
dispersion and diffusion inherent to the physical phenomenon modelled by the numerical scheme. On
the other hand, the increased order of accuracy necessitates enlarging the numerical stencil which
leads to a larger computational effort. Another drawback of the high order schemes is associated with
the unphysical oscillations generated near discontinuities (shock waves or shear flows). Hence, a
thorough analysis of the accuracy of various numerical schemes is required to pinpoint the behaviour
of these techniques in the presence of flow discontinuities.

In the first part of the present paper, we analyse in detail a series of test cases for which the exact
analytical solution has been produced and could serve as a better ground for accuracy prediction of
the tested high order numerical schemes. In the frame of spatial discretization, we are interested in
two essential steps in solution procedure: reconstruct the physical fields to find the values at the left-
and right-sides of cell boundaries and evaluate the numerical fluxes at cell boundaries required in the
finite volume method (FVM) formulation to update the cell-integrated values for next time step. For
the first step, four different reconstruction schemes are analysed: the original Weighted Essentially
Non-Oscillatory (WENO) scheme [1], Mapped WENO (WENO-M) [2], Compact Reconstruction WENO
(CRWENO) schemes [3] and WENO-Z scheme [4].The main interest is limited to present comparisons
of numerical tests. Interested readers are referred to cited articles for theoretical background.The
evaluation of the numerical fluxes at cell boundaries is needed to update the cell-integrated values
for next time step and to solve the exact Riemann problem at the cell's boundary in the FVM
formulation. In this paper, for the second step we use the following typical numerical fluxes: the Roe
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flux [5], the HLL (Harten—-Lax-van Leer ) flux [6], the Lax—Friedrichs flux [1], the HLLL (Harten—Lax-
van Leer -Linde) flux[7] and the AUSM flux[8]. Numerical schemes based on linear approximation
often produce spurious oscillations and overshoots near discontinuities especially when the solution
has non-smooth behaviour (such as expansions, shocks or contact discontinuities).

The second part of the paper refers to numerical resolution of shock wave/boundary layer interaction
problem in supersonic/hypersonic flows. The physical features of a shock wave/boundary layer
interaction in the hypersonic regime are extensively presented in the works of Chapman et al. [9],
Anderson[10], Green [11], Holden [12] and Marini [13]. Experimental studies of both laminar and
turbulent shock wave/boundary-layer interactions from supersonic through hypersonic regime were
published by Holden [12], Settles et al.[13] and Kuntz et al [15]. The palette of cases covers a wide
range of Mach and Reynolds numbers. Numerical results are compared with available experimental
results. It is shown that the accuracy of the numerical data depends strongly on ramp angle and
Reynolds number.

2. Assessment of some high-order schemes
2.1. Problem formulation

Many fluid dynamics applications ranging from turbulence to acoustics include propagation of
nonlinear waves with a continuous or discontinuous distribution of the physical variables. Rarefaction
fans, shocks or contact discontinuities are elementary waves that make upthe solution of Riemann
problem for hyperbolic equations, like Euler equations [5, 6]. The aim of the present work is a new
comparison of the behaviour of the 5th-order WENO-type numerical methods: the classical WENO-JS
[16, 17, 18], the mapped WENO [2], the compact reconstruction WENO [3] and the WENO-Z [4, 7].
Let us consider the initial value problem of the one-dimensional vector conservative equation
V>0, xeR:

ou  oF(U)

—+———==0, Ux,0=U(x), 1
Py ox (x,0)=U, (x) (1)
whereU(X,t)and F(U(x,t)) are the conservative variables and respectively the conservative flux

vector defined by:
t
U=(p,pu,pE ), F=(pu,pt?+p,u(pE + p)) ()

andU, (x) is the initial condition. Density o, velocity v, pressure pare related to the total energy
E by the calorically perfect ideal gas equation of state

p:(k—1)p(E-u2/z) (3)

with K the ratio of specific heats being constant and equal to1.4.
The numerical solution is obtained by discretizing the equation in space and time.

Discretizing the spatial derivative for each corresponding pointx; = jAx, j=0,_N, the following
conservative finite difference scheme results:

* *

du. F, -F,
J + j+1/2 Jj-1/2 =0. (4)
dt AX

Thus, we get a system of ordinary differential equations for U, (¢) =U(x,,¢). The term F  , is the

numerical flux at cell boundaries computed by a Riemann solver F;,, , =F¥™™ U, ., U5 ).

The solution of the conservative finite difference formulation of Eq. (1) written in the semi-discrete
form, Eq. (4), consists of two steps: spatial discretization and time marching, respectively.

2.2. Spatial and temporal discretization

As mentioned before four different reconstruction schemes are analyzed: the original Weighted
Essentially Non-Oscillatory (WENQO) scheme, Mapped WENO (WENO-M), Compact Reconstruction
WENO (CRWENO) schemes proposed by Ghosh and Baeder [3] and WENO-Z scheme. To estimate the
numerical flux at the cell boundary we use the following typical numerical fluxes: the Roe flux, the
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HLL (Harten—Lax-van Leer) flux, the Lax—Friedrichs flux, the HLLL (Harten—Lax-van Leer -Linde) flux
and the AUSM flux.

The numerical solution of the scalar conservation law is semi-discretized in the spatial domain using a
discrete set of points. After the spatial partial derivatives have been replaced with appropriate finite
differences in x,, we get the following system of ODE's:

du _ L)), LU )= - F(U(Xj+l/2/t)) F(U(Xj—l/zlt)) ) (5)
dt / Ax

where the discrete operator L is used to solve each ODE in time. Here, we associate the time

dependent vector U(¢) withU (¢) =U(x,,£), j=0,N .

The time discretization will be implemented using a third-order TVD Runge—Kutta (TVDRK3)
developed by Shuand Osher [10].

Ul = U7 + AU ©)
u® =0.750" +0.25U" + Az(UY) )
U™t =U” /3+2u% /34 2A8(UP) /3 ®)

2.3. Numerical tests

In this section, we present the numerical results of some typical benchmark shock-tube tests for 1D
Euler equation with different Riemann initial conditions. The main purpose is to capture the salient
features and to present objectively the capacity of each WENO method to solve the shock tube
problem with different initial conditions. These benchmark tests are most relevant in order to check
and to identify accurate the position of the shock, contact and rarefaction waves in each situation.

The shock tube problem considers a long, thin, cylindrical tube of gas separated by a thin membrane.
The gas is assumed to be at rest on both sides of the membrane, but it has different constant
pressures and densities on each side. At time £ =0, the membrane is ruptured and the problem is to
determine the ensuing motion of the gas which generates a nearly centred wave system that typically
consists of a rarefaction/shock wave, a contact discontinuity and a shock/rarefaction wave. The
middle wave is always a contact discontinuity while the left and right (non-linear) waves are either
shock or rarefaction waves. Therefore, according to the type of nonlinear waves there can be four
possible wave patterns [6]. This physical problem is reasonably well approximated by solving the
shock-tube problem for the Euler equations. This problem was first studied by Riemann, and known
as the Riemann problem. The solution to this problem consists of a shock wave moving into the low-
pressure region, a rarefaction wave that expands into the high-pressure region, and a contact
discontinuity which represents the interface. The computational domain is taken as [0, 1]. In most of

the numerical tests at x =0and at x =1zero gradient boundary conditions are considered. Any other
situations will be specifically mentioned.

a. Sod’s shock tube problem (expansion-contact-shock)
The initial condition for the Sod problem [6] is

( U p)_ (11011)1 0<x<0.5
PriP)=10.125,0,0.1), 05<x<1 )

and the final time is £ =0.15. The grid resolution is 400 cells and the time stepping condition is CFL
= 0.3. Fig. 1 illustrates well resolved shock and contact solutions.
Predictions given by the WENO-type schemes are indistinguishable at the scale shown. Nevertheless,
the numerical solution displays a gradual departure from the analytical solution in the regions with
sharp slopes.
b. Lax’s shock tube problem (expansion-contact-shock)
The initial condition for the Lax problem [6] is

(0.445,0.698,3.528), 0<x<0.5

U, =

(pr v, P) {(0.5,0,0.571), 05<x<1
and the final time is £=0.12. Fig.2 shows no spurious oscillations at any shock or contact
discontinuities.

(10)
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Fig. 2. Numerical results for the density for the Lax’s shock tube problem at t = 0.12.

c. Strong shock tube problem (expansion-contact-shock)
The initial condition for the strong shock tube problem [8] is

(1,0,10°),  0<x<0.5
(pl ulp) =
(0.125,0,0.1), 0.5<x<1

(10)

and the final time is ¢ =2.5-10"°. This initial condition creates a supersonic shock associated with
extreme jumps in velocity and pressure, see Fig.3a. It is well known that purely non-conservative
schemes fail to compute strong shocks due to their intrinsic inability to calculate the correct shock
speeds Fig.3b shows there are density overshoots in results but correct shock calculation. We have
also remarked that AUSM scheme does not converge in most of the cases. The only case where it
works (N.B. but not very accurate), is with CRWENO method. Instead, Lax flux gives high oscillations
in the vicinity of the contact wave.
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Fig. 3a. Pressure and Mach number for the strong shock tube problem at t = 2.5 - 10,
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Fig. 3b. Numerical results for the density for the strong shock tube problem at t = 2.5 - 10°®.
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Fig. 4a. Pressure, Mach number, entropy and temperature evolution for of the Mach 3 shock tube
problem att = 0.09
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Fig. 4b. Numerical results of the strong shock tube problem at t = 2.5 - 10,
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Fig. 4c. Numerical results of the strong shock tube problem at t = 2.5 - 10°%(details).

d. Mach 3 shock test (expansion-contact-shock)
The Mach 3 shock tube experiment [17] uses the following initial conditions,
(3.857,0.92,10.3333), 0<x <0.5
(pyu,p)= (11)
(1,3.55,1), 0.5<x<1
and the final time is¢ =0.09. Fig.4a shows no evident spurious oscillations at any shock or contact
discontinuities except that the combination with Lax flux (not represented).In all cases we notice a
small wavelet at shock discontinuity, see Fig. 4b and Fig. 4c.
e. High Mach flow test (shock-contact-shock)
The high Mach 3 shock tube experiment [19] uses the following initial conditions,
(10,2000,500), 0<x <0.5
(pl u, p) =
(20,0,500), 0.5<x<1
and the final time is £=0.09. Numerical solution using WENOM method is given in Fig. 5a. An

unexpected result was discovered regarding CRWENO and WENO-Z method. We note that only
WENO-JS and WENO-M gives numerical solutions to the problem.

(12)
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Fig. 5a. Pressure, Mach number, entropy and temperature evolution for high Mach number shock
tube problem att = 1.75 - 10

3. Shock wave boundary layer interaction
3.1. The SUPERHYP code

The in-house code that has been developed (SUPERHYP) solves the time-dependent conservation law
form of the RANS/LES equations. The spatial discretization involves a finite-volume approach.
Upwind-biasing is used for the convective and pressure terms, while central differencing is used for
the shear stress and heat transfer terms. Time advancement strategy allows solving steady or
unsteady flows. This code is Fortran parallel code with a graphical interface to survey the solution
during run. To account the air dissociation at high temperature fields the Park model and an interface
with Chemkin code was also developed. For equilibrium flow the results of Gupta and all. [21] were
adapted and implemented.

Code SUPERHYP solves the time-dependent conservation law form of the RANS/LES equations. The
spatial discretization involves a semi-discrete finite-volume approach. Upwind-biasing is used for the
convective and pressure terms, while central differencing is used for the shear stress and heat
transfer terms. Time advancement strategy allows solving steady or unsteady flows. Grids must be
supplied extraneously, but a mesh generator for simple geometries is included in the package.
SUPRHYP uses standard Fortran and will work on any machine with a compliant Fortran compiler
(Fortran here denotes Fortran 90 or later - FORTRAN 77, FORTRAN 66, FORTRAN IV or other
antiquated dialects are only supported to the extent that F90 is backward compatible). For
distributed-memory parallelism, MPI can be used. In clustered architectures, OpenMP can be used for
multiple processors on a node while MPI can be used between nodes.

3.2. Test cases

The laminar or turbulent flows over compression ramps with sharp leading edge is a typical shock-
wave/boundary layer interaction problem (SWBLI). Fig. 6shows the system of shock waves present in
supersonic/hypersonic flow around the ramp.
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Fig.6 Schlieren photograph showing the flow configuration over the compression ramp in supersonic
flow [22].

a) Test case 1.

The case corresponds to the experiments performed at the Calspan-UB Research Center wind tunnel
[12] and reported by Marini [13]. The length of the flat plate is L = 0.4394 m and the ramp angle is
15 deg. To improve the boundary condition implementation in the leading edge of the horizontal
plate, an upstream zone of 0.1 m length was added to the reference geometry. Flow conditions are:
M, = 11.63; Re,/m= 552116; T, = 67.05 K and T, = 294.38 K. Assuming the fluid air with

constant thermodynamic proprieties the inflow velocity can be calculated, V,, = 1913.21 m/s.

The calculations were performed on a modest machine (INTEL I7 processor using 2 cores). The
computational time was about 2 hours to reduce the residual (for axial velocity) up to 10°. The
predicted results and the experimental results of Holden are presented in Fig.7 - Fig.9. In Fig.10 and
Fig. 11 the calculated field variables Mach number and temperature are plotted.

b) Test case 2

This case was also investigated experimentally by Holden and Moselle [23]. The geometry is
composed by a flat plate of length L = 0.4389 m, followed by a compression ramp of the same
length, whose angle is 8 = 24 deg. Flow conditions are: M_, = 14.1; Re_/m = 236200; T, = 88.88

Kand T, = 297.22 K. An extended separation zone in vicinity of the ramp corner is present in this

flow. Fig.12 plots the normalized pressure distribution along the wall. Obviously, the accuracy of the
SUPERHYP code is very good. The pressure plateau in the separated region is very well predicted,
Also the pressure distribution along the inclined wall is practically identical to the experimental data.
However, the jump magnitude is slightly over predicted. The separation zone is also accurately
calculated (Fig. 13). Not only the separation and the reattachment points are identified, but also the
skin friction values in the separation zone correspond to the reference data. A good accuracy is
obtained also for the Stanton number distribution (Fig.14). The shape of the distribution curve behind
the corner is very well obtained, but the predicted position of the maximum value is slightly
downstream with respect to the experimental data. Also, the maximum value is also somewhat under
predicted. However, the differences are acceptable (maximum relative error is about 5%).

03 - - - 0.015 v = T -
0.25 : ¢ : 1 o pradicton
PPy i p i f_ﬂf oo " ] n .Elpn.lmnl.llHeTom |
015 L O Exewimemsitieden) Qf T : 0.01 b | I I
: : e .
01} i T ;;? T | T |
c 9 | - K T
r? | ‘_ﬁr Soos |- R B e — ?f 4 s“-;\
P S S I S . o | ¢
[N i‘ “"’v-,;_,; | g;
& g vn”% | a ¥
§ : : {4
fag, @ TR
Ssg |
y
| | -0.005 1 | v
0 53 o.lax 35 o5 02 % o8 o8
Fig. 7 Pressure distribution along the wall Fig. 8 Skin friction distribution along the wall
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with Spalart-Almaras (SA) turbulence model.

On the ramp the pressure distribution oscillates, but similar behaviour is noticed inthe experimental
data. For the Spalart-Almaras turbulence model, the results are like those given by the k-epsilon
turbulence model. However, the asymptotic limit of pressure on the ramp is under predicted and the
length of the detachment zone in front of the ramp is higher. Fig. 17 shows the pressure distribution
on the 24 deg "Princeton ramp" [14].

4. Proper Orthogonal Decomposition

Proper Orthogonal Decomposition (POD) is a method [24] that reconstructs a data set from its
projection onto an optimal base. Besides using an optimal base for reconstructing the data, the POD
does not use any prior knowledge of the data set. Because the basis is only data dependent, POD is
also used in analyzing the natural patterns of the flow field. The POD analysis for the above
presented flows shows that the first two modes are monotone and reach a steady state. The higher
modes become unsteady (oscillating) and cause the oscillation of the solution. Correlating with the
shape of the higher modes we can identify the zones affected by oscillations. As expected, the higher
modes present significant magnitudes atgrid points with sudden variation of parameters (along the
shock wave). This behavior can be avoided "adapting”" the mesh in the shock region and
implementing non-oscillatory numerical schemes. However, the magnitudes of higher modes (starting
with the third mode) near the wall are very small. Consequently, the wall distributions are not
affected by oscillations and can be considered as a solution to the problem. Fig.18 shows the energy
distribution on modes. The first 10 modes, containing 99.7% of the total energy, can be used for
Reduced Order Model (ROM) reconstruction.

o 1600
1400
b7y e |
@ e,
10 'gzoo e
/
w /
B Y000 if
£ £ /
w S /
1 Es00 /
E /
[*] /
£.600
5 o
[t Iraf
400 &
10 -
0 1 2 3 4 5 [ 7 a ] 10
Mode number 200
Fig. 18 Fraction of total energy for the most 01 23S apshottime e 7181920

energetic modes Fig.19 First mode amplitude variation.

HiSST 2018-2810952 Page | 10
Sterian Danaild, Alina Bogoi, Dragos Isvoranu, Constantin Leventiu Copyright © 2018 by the author(s)



HiSST: International Conference on High-Speed Vehicle Science Technology

Fig. 19 depict the temporal amplitude variation. The initial stages correspond to the formation of the
shock waves as discussed above. Initial conditions assumed in the code setting influence the solution
development on the first stages; for the last stages the main contribution in the solution belongs to
the boundary conditions.

5. Conclusions

This paper is a continuation of the research from other papers [25, 26, 27] where we have analysed
the behaviour and performances of different numerical schemes, in terms of accuracy and
convergence properties. After the investigation of the advection equation and the scalar conservation
equations with different initial conditions and different convex and non-convex conservative fluxes,
we continued the research with the one-dimensional conservation equation. The code SUPERHYP was
verified for a number of test experimental data available in literature. The cases correspond to the
SWBL interaction problems at hypersonic velocities. For simple compression corner shock-boundary
layer interactions, the results presented seem to indicate that, the RANS models are able of predicting
surface pressures to a level of accuracy adequate for most engineering design work. However, much
work remains before accurate predictions of the thermal environments over a flight vehicle may be
obtained. The code predicts good results with respect to the reference data. We note the good
stability of the numerical algorithm. The CFL number was considerably high during calculations (the
adopted values were in the range from 1.5 to 2.5). To our best knowledge, similar codes in the
available literature use CFL values around 0.05, especially for the first hundredsof iterations. The POD
is used in analyzing the natural patterns of the flow field. The POD analysis shows that the first two
modes are monotone and reach a steady state. The higher modes become unsteady (oscillating) and
cause the oscillation of the solution. Correlating with the shape of the higher modes we can identify
the zones affected by oscillations.
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