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Abstract 

Present paper is a two-step investigation of some benchmark problems in the field of 
supersonic/hypersonic phenomena. The first step is concerned on the assessment of three Weighted 
Essentially Non-Oscillatory (WENO) type numerical schemes for shock tube problems applied for 
simple cases, like scalar conservation law. The idea is to objectively present the performances of 
these numerical schemes covering a wider range of Riemann problems and not only on some specific 
favourable cases as it is customary done in specialized literature. All the schemes identify accurate 
the position of the shock and converge to the proper weak solution for non-linear flux and different 
initial conditions. Next, the paper refers to the unsteady laminar or turbulent shock wave/boundary 
layer interactions over compression ramps with a sharp leading edge. The in-house code that has 
been developed (SUPERHYP) solves the time-dependent conservation law form of the RANS/LES 
equations. This code is Fortran parallel code with a graphical interface to survey the solution during 
run. The spatial discretization involves a finite-volume approach. Upwind-biasing is used for the 
convective and pressure terms, while central differencing is used for the shear stress and heat 
transfer terms. Time advancement strategy allows solving steady or unsteady flows. Grids must be 
supplied, but a mesh generator for simple geometries is included in the package 
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1. Introduction 
It is a well-known fact that numerical simulations, especially DNS and LES, require high resolution 
discretization techniques in both space and time domains. One major challenge in applying these 
techniques is the constant pursuit for reducing the numerical dispersion and diffusion bellow the 
dispersion and diffusion inherent to the physical phenomenon modelled by the numerical scheme. On 
the other hand, the increased  order of accuracy necessitates enlarging the numerical stencil which 
leads to a larger computational effort. Another drawback of the high order schemes is associated with 
the unphysical oscillations generated near discontinuities (shock waves or shear flows). Hence, a 
thorough analysis of the accuracy of various numerical schemes is required to pinpoint the behaviour 
of these techniques in the presence of flow discontinuities.  
In the first part of the present paper, we analyse in detail a series of test cases for which the exact 
analytical solution has been produced and could serve as a better ground for accuracy prediction of 
the tested high order numerical schemes. In the frame of spatial discretization, we are interested in 
two essential steps in solution procedure: reconstruct the physical fields to find the values at the left-
and right-sides of cell boundaries and evaluate the numerical fluxes at cell boundaries required in the 
finite volume method (FVM) formulation to update the cell-integrated values for next time step. For 
the first step, four different reconstruction schemes are analysed: the original Weighted Essentially 
Non-Oscillatory (WENO) scheme [1], Mapped WENO (WENO-M) [2], Compact Reconstruction WENO 
(CRWENO) schemes [3] and WENO-Z scheme [4].The main interest is limited to present comparisons 
of numerical tests. Interested readers are referred to cited articles for theoretical background.The 
evaluation of the numerical fluxes at cell boundaries is needed to  update the cell-integrated values 
for next time step and to solve the exact Riemann problem at the cell’s boundary in the FVM 
formulation. In this paper, for the second step we use the following typical numerical fluxes: the Roe 
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flux [5], the HLL (Harten–Lax-van Leer ) flux [6], the Lax–Friedrichs flux [1], the HLLL (Harten–Lax-
van Leer -Linde) flux[7] and the AUSM flux[8]. Numerical schemes based on linear approximation 
often produce spurious oscillations and overshoots near discontinuities especially when the solution 
has non-smooth behaviour (such as expansions, shocks or contact discontinuities). 
The second part of the paper refers to numerical resolution of shock wave/boundary layer interaction 
problem in supersonic/hypersonic flows. The physical features of a shock wave/boundary layer 
interaction in the hypersonic regime are extensively presented in the works of Chapman et al. [9], 
Anderson[10], Green [11], Holden [12] and Marini [13]. Experimental studies of both laminar and 
turbulent shock wave/boundary-layer interactions from supersonic through hypersonic regime were 
published by Holden [12], Settles et al.[13] and Kuntz et al [15]. The palette of cases  covers a wide 
range of Mach and Reynolds numbers. Numerical results are compared with available experimental 
results. It is shown that the accuracy of the numerical data depends strongly on ramp angle and 
Reynolds number.  

2. Assessment of some high-order schemes 
2.1. Problem formulation 
Many fluid dynamics applications ranging from turbulence to acoustics include propagation of 
nonlinear waves with a continuous or discontinuous distribution of the physical variables. Rarefaction 
fans, shocks or contact discontinuities are elementary waves that make upthe solution of Riemann 
problem for hyperbolic equations, like Euler equations [5, 6]. The aim of the present work is a new 
comparison of the behaviour of the 5th-order WENO-type numerical methods: the classical WENO-JS 
[16, 17, 18], the mapped WENO [2], the compact reconstruction WENO [3] and the WENO-Z [4, 7]. 
Let us consider the initial value problem of the one-dimensional vector conservative equation 
   0,t x : 

 
0, ( , 0) ( )x x

t x



 

 

F UU 0 U U , (1)

where  ,x tU and ( ( , ))x tF U   are the conservative variables and respectively the conservative flux 
vector defined by: 

   2, , , , , ( )
ttu E u u p u E p         U F  (2)

and 0 ( )xU  is the initial condition. Density  ,  velocity u ,  pressure p are related to the total energy 
E  by  the calorically perfect ideal gas equation of state 

   2 / 21 E up k     (3)

with k the ratio of specific heats being constant  and equal to1.4. 
The numerical solution is obtained by discretizing the equation in space and time. 
Discretizing the spatial derivative for each corresponding point , 0,jx j x j N   , the following 
conservative finite difference scheme results: 

* *
1/2 1/2d

0.
d

j j j

t x
 

 


U F F
 (4)

Thus, we get a system of ordinary differential equations for ( ) ( , )j jt x tU U . The term 1/2j F  is the 

numerical flux at cell boundaries computed by a Riemann solver * Riemann
1/2 1/2 1/2( , )L R

j j j   U UF F . 
The solution of the conservative finite difference formulation of Eq. (1) written in the semi-discrete 
form, Eq. (4), consists of two steps: spatial discretization and time marching, respectively. 
2.2. Spatial and temporal discretization 
As mentioned before four different reconstruction schemes are analyzed: the original Weighted 
Essentially Non-Oscillatory (WENO) scheme, Mapped WENO (WENO-M), Compact Reconstruction 
WENO (CRWENO) schemes proposed by Ghosh and Baeder [3] and WENO-Z scheme. To estimate the 
numerical flux at the cell boundary we use the following typical numerical fluxes: the Roe flux, the 
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HLL (Harten–Lax-van Leer) flux, the Lax–Friedrichs flux, the HLLL (Harten–Lax-van Leer -Linde) flux 
and the AUSM flux. 
The numerical solution of the scalar conservation law is semi-discretized in the spatial domain using a 
discrete set of points. After the spatial partial derivatives have been replaced with appropriate finite 
differences in jx , we get the following system of ODE's: 

d ( ( ))
d

L t
t


U U ,    1/2 1/2( , ) ( , )
( ) j j

j
x t x t

L
x

 
 



F U F U
U , (5)

where the discrete operator L is used to solve each ODE in time. Here, we associate the time 
dependent vector ( )tU with ( ) ( , ), 0,j jt x t j N U U . 
The time discretization will be implemented using a third-order TVD Runge–Kutta (TVDRK3) 
developed by Shuand Osher [10]. 

 1 ( )n ntL  U U U   (6)
     2 1 10.75 0.25 ( )n tL   U U U U   (7)

   2 21 / 3 2 / 3 2 ( ) / 3n n tL    U U U U   (8)

2.3. Numerical tests 
In this section, we present the numerical results of some typical benchmark shock-tube tests for 1D 
Euler equation with different Riemann initial conditions. The main purpose is to capture the salient 
features and to present objectively the capacity of each WENO method to solve the shock tube 
problem with different initial conditions. These benchmark tests are most relevant in order to check 
and to identify accurate the position of the shock, contact and rarefaction waves in each situation.  
The shock tube problem considers a long, thin, cylindrical tube of gas separated by a thin membrane. 
The gas is assumed to be at rest on both sides of the membrane, but it has different constant 
pressures and densities on each side. At time 0t  , the membrane is ruptured and the problem is to 
determine the ensuing motion of the gas which generates a nearly centred wave system that typically 
consists of a rarefaction/shock wave, a contact discontinuity and a shock/rarefaction wave. The 
middle wave is always a contact discontinuity while the left and right (non-linear) waves are either 
shock or rarefaction waves. Therefore, according to the type of nonlinear waves there can be four 
possible wave patterns [6]. This physical problem is reasonably well approximated by solving the 
shock-tube problem for the Euler equations. This problem was first studied by Riemann, and known 
as the Riemann problem. The solution to this problem consists of a shock wave moving into the low-
pressure region, a rarefaction wave that expands into the high-pressure region, and a contact 
discontinuity which represents the interface. The computational domain is taken as [0,  1] . In most of 
the numerical tests at 0x  and at 1x  zero gradient boundary conditions are considered. Any other 
situations will be specifically mentioned. 
 
a. Sod’s shock tube problem (expansion-contact-shock) 
The initial condition for the Sod problem [6] is 

  (1,0,1), 0 0.5, ,
(0.125,0,0.1), 0.5 1

xu p
x

 
  

 
 (9)

and the final time is 0.15t  . The grid resolution is 400 cells and the time stepping condition is CFL 
= 0.3. Fig. 1 illustrates well resolved shock and contact solutions. 
Predictions given by the WENO-type schemes are indistinguishable at the scale shown. Nevertheless, 
the numerical solution displays a gradual departure from the analytical solution in the regions with 
sharp slopes.  
b. Lax’s shock tube problem (expansion-contact-shock) 
The initial condition for the Lax problem [6] is 

  (0.445,0.698,3.528), 0 0.5, ,
(0.5,0,0.571), 0.5 1

xu p
x

 
  

 
 (10)

and the final time is 0.12t  . Fig.2 shows no spurious oscillations at any shock or contact 
discontinuities. 
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Fig. 1. Numerical results for the density for Sod’s shock tube problem at t = 0.15. 
 

 

 

 

Fig. 2. Numerical results for the density for the Lax’s shock tube problem at t = 0.12. 
 
c. Strong shock tube problem (expansion-contact-shock) 
The initial condition for the strong shock tube problem [8] is 

 
10(1,0,10 ), 0 0.5, ,

(0.125,0,0.1), 0.5 1
xu p

x
  

  
 

 (10)

and the final time is 62.5 10t   . This initial condition creates a supersonic shock associated with 
extreme jumps in velocity and pressure, see Fig.3a. It is well known that purely non-conservative 
schemes fail to compute strong shocks due to their intrinsic inability to calculate the correct shock 
speeds Fig.3b shows there are density overshoots in results but correct shock calculation. We have 
also remarked that AUSM scheme does not converge in most of the cases. The only case where it 
works (N.B. but not very accurate), is with CRWENO method. Instead, Lax flux gives high oscillations 
in the vicinity of the contact wave.  
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Fig. 3a. Pressure and Mach number for the strong shock tube problem at t = 2.5 · 10-6. 
 

 

 

 

 

Fig. 3b. Numerical results for the density for  the strong shock tube problem at t = 2.5 · 10-6. 
 
 

 

 

 

 

Fig. 4a. Pressure, Mach number, entropy and temperature evolution for of the Mach 3 shock tube 
problem at t = 0.09 
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Fig. 4b. Numerical results of the strong shock tube problem at t = 2.5 · 10-6. 
 

 

 

Fig. 4c. Numerical results of the strong shock tube problem at t = 2.5 · 10-6(details). 
 
d. Mach 3 shock test (expansion-contact-shock) 
The Mach 3 shock tube experiment [17] uses the following initial conditions,  

  (3.857,0.92,10.3333), 0 0.5, ,
(1,3.55,1), 0.5 1

xu p
x

 
  

 
 (11)

and the final time is 0.09t  . Fig.4a shows no evident spurious oscillations at any shock or contact 
discontinuities except that the combination with Lax flux (not represented).In all cases we notice a 
small wavelet at shock discontinuity, see Fig. 4b and Fig. 4c. 
e. High Mach flow test (shock-contact-shock) 
The high Mach 3 shock tube experiment [19] uses the following initial conditions,  

  (10,2000,500), 0 0.5, ,
(20,0,500), 0.5 1

xu p
x

 
  

 
 (12)

and the final time is 0.09t  . Numerical solution using WENOM method is given in Fig. 5a. An 
unexpected result was discovered regarding CRWENO and WENO-Z method. We note that only 
WENO-JS and WENO-M gives numerical solutions to the problem.  
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Fig. 5a. Pressure, Mach number, entropy and temperature evolution for high Mach number shock 
tube problem at t = 1.75 · 10-4 

 

3. Shock wave boundary layer interaction  
3.1. The SUPERHYP code 
The in-house code that has been developed (SUPERHYP) solves the time-dependent conservation law 
form of the RANS/LES equations. The spatial discretization involves a finite-volume approach. 
Upwind-biasing is used for the convective and pressure terms, while central differencing is used for 
the shear stress and heat transfer terms. Time advancement strategy allows solving steady or 
unsteady flows. This code is Fortran parallel code with a graphical interface to survey the solution 
during run. To account the air dissociation at high temperature fields the Park model and an interface 
with Chemkin code was also developed. For equilibrium flow the results of Gupta and all. [21] were 
adapted and implemented.  
Code SUPERHYP  solves the time-dependent conservation law form of the RANS/LES equations. The 
spatial discretization involves a semi-discrete finite-volume approach. Upwind-biasing is used for the 
convective and pressure terms, while central differencing is used for the shear stress and heat 
transfer terms. Time advancement strategy allows solving steady or unsteady flows. Grids must be 
supplied extraneously, but a mesh generator for simple geometries is included in the package.  
SUPRHYP uses standard Fortran and will work on any machine with a compliant Fortran compiler 
(Fortran here denotes Fortran 90 or later - FORTRAN 77, FORTRAN 66, FORTRAN IV or other 
antiquated dialects are only supported to the extent that F90 is backward compatible). For 
distributed-memory parallelism, MPI can be used. In clustered architectures, OpenMP can be used for 
multiple processors on a node while MPI can be used between nodes.  
3.2. Test cases 
The laminar or turbulent flows over compression ramps with sharp leading edge is a typical shock-
wave/boundary layer interaction problem (SWBLI). Fig. 6shows the system of shock waves present in 
supersonic/hypersonic flow around the ramp.  
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Fig.6 Schlieren photograph showing the flow configuration over the compression ramp in supersonic 

flow [22]. 
a) Test case 1. 
The case corresponds to the experiments performed at the Calspan-UB Research Center wind tunnel 
[12] and reported by Marini [13]. The length of the flat plate is L = 0.4394 m and the ramp angle is 
15 deg. To improve the boundary condition implementation in the leading edge of the horizontal 
plate, an upstream zone of 0.1 m length was added to the reference geometry. Flow conditions are: 
M  = 11.63; Re / m = 552116; T  = 67.05 K and wT  = 294.38 K.  Assuming the fluid air with 
constant thermodynamic proprieties the inflow velocity can be calculated, V  = 1913.21 m/s.  
The calculations were performed on a modest machine (INTEL I7 processor using 2 cores). The 
computational time was about 2 hours to reduce the residual (for axial velocity) up to 10-3. The 
predicted results and the experimental results of Holden are presented in Fig.7 - Fig.9. In Fig.10 and 
Fig. 11 the calculated field variables Mach number and temperature are plotted. 
b) Test case 2 
This case was also investigated experimentally by Holden and Moselle [23]. The geometry is 
composed by a flat plate of length L = 0.4389 m, followed by a compression ramp of the same 
length, whose angle is θ = 24 deg. Flow conditions are: M  = 14.1; Re / m  = 236200; T  = 88.88 
K and wT  = 297.22 K. An extended separation zone in vicinity of the ramp corner is present in this 
flow. Fig.12 plots the normalized pressure distribution along the wall. Obviously, the accuracy of the 
SUPERHYP code is very good. The pressure plateau in the separated region is very well predicted, 
Also the pressure distribution along the inclined wall is practically identical to the experimental data. 
However, the jump magnitude is slightly over predicted. The separation zone is also accurately 
calculated (Fig. 13). Not only the separation and the reattachment points are identified, but also the 
skin friction values in the separation zone correspond to the reference data. A good accuracy is 
obtained also for the Stanton number distribution (Fig.14). The shape of the distribution curve behind 
the corner is very well obtained, but the predicted position of the maximum value is slightly 
downstream  with respect to the experimental data. Also, the maximum value is also somewhat under 
predicted. However, the differences are acceptable (maximum relative error is about 5%). 
 

 
Fig. 7 Pressure distribution along the wall 

 
 

Fig. 8 Skin friction distribution along the wall 
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Fig. 9 Stanton number distribution along the wall 

 
Fig.10 Mach number distribution  

 
Fig. 11 Temperature field  

Fig.12 Normalized pressure distribution along 
the wall, case#2 

 

Fig.13. Skin friction distribution along the wall, 
case#2 

 

 
Fig.14 Stanton number distribution along the 

wall, case #2 
 

 
Fig. 15 Dimensionless pressure distribution along 
the wall for 8 deg Princeton compression ramp 

with k-epsilon turbulence model 
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Fig. 19 depict the temporal amplitude variation. The initial stages correspond to the formation of the 
shock waves as discussed above. Initial conditions assumed in the code setting influence the solution 
development on the first stages; for the last stages the main contribution in the solution belongs to 
the boundary conditions. 

5. Conclusions 
This paper is a continuation of the research from other papers [25, 26, 27] where we have analysed 
the behaviour and performances of different numerical schemes, in terms of accuracy and 
convergence properties. After the investigation of the advection equation and the scalar conservation 
equations with different initial conditions and  different convex and non-convex conservative fluxes,  
we continued the research with the one-dimensional conservation equation. The code SUPERHYP was 
verified for a number of test experimental data available in literature. The cases correspond to the 
SWBL interaction problems at hypersonic velocities. For simple compression corner shock-boundary 
layer interactions, the results presented seem to indicate that, the RANS models are able of predicting 
surface pressures to a level of accuracy adequate for most engineering design work. However, much 
work remains before accurate predictions of the thermal environments over a flight vehicle may be 
obtained. The code predicts good results with respect to the reference data. We note the good 
stability of the numerical algorithm. The CFL number was considerably high during calculations (the 
adopted values were in the range from 1.5 to 2.5). To our best knowledge, similar codes in the 
available literature use CFL values around 0.05, especially for the first hundredsof iterations. The POD 
is used in analyzing the natural patterns of the flow field. The POD analysis shows that the first two 
modes are monotone and reach a steady state. The higher modes become unsteady (oscillating) and 
cause the oscillation of the solution. Correlating with the shape of the higher modes we can identify 
the zones affected by oscillations. 
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