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Abstract 

The lattice Boltzmann method, which is based on microscopic models and mesoscopic kinetic equations 
for particle distribution functions, has become a prominent tool in CFD. The 3D lattice Boltzmann 
method in the framework of coupled double-distribution-function approach for high-speed viscous flows, 
in which specific-heat ratio and Prandtl number can be adjustable, is developed and studied in this 
paper. Two types of equilibrium distribution functions are involved, which based on spherical function 
and Hermite basis, respectively. The two models are tested through numerical simulations of some 
typical compressible flows, and their numerical stability and precision are also analyzed. The results 
indicate that the two models are capable for high-speed flows, while the one based on Hermite 
expansions has numerical stability problem when dealing with compressible flows with shock waves. 
An artificial viscosity is introduced to enhance the latter model for capturing shock waves and the effect 
of artificial viscosity is estimated. 

Keywords: Lattice Boltzmann method, three-dimensional, supersonic flows, artificial viscosity, viscous 
flows. 

Nomenclature (Tahoma 11 pt, bold) 

f - density distribution function 

h - total energy distribution function 

e - discrete particle velocity in  direction, 

f - density relaxation time 

h - energy relaxation time 
Pr- Prandtl number 


- density 
u - velocity 

p- pressure 
D- dimension of the space 

ij
- Kronecker delta function 

E- total energy 
T- temperature 


- viscosity 
L- length 
Ma- Mach number 
Cf- skin friction coefficient 
 

1. Introduction  

The lattice Boltzmann method(LBM) has become a prominent tool in computational fluid 
dynamic(CFD)[1]. Unlike the conventional numerical methods, which are based on discretization of 
macroscopic governing equations, and unlike the molecular dynamics method, which is based on 
molecular representation with complicated molecule collision rules, the LBM is based on microscopic 
models and mesoscopic kinetic equations for particle distribution functions. It simulates fluid flows by 
tracking the evolutions of the distribution functions and then accumulates the distributions to obtain 
macroscopic averaged properties. As a mesoscopic numerical method based on the kinetic theory, LBM 
can describe complex flows from an intuitive view of particle distribution. Its advantages include highly 
efficiency in parallel computing, complex boundary conditions can be easily formulated in terms of 
elementary mechanics rules, and simple programming. It has been applied to various fluid applications 
successfully 
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The basic idea of LBM is to solve discrete Boltzmann Bhatnagar-Gross-Krook(BGK) equation, in which 
the key issue is distribution function. The distribution function is the discrete velocity Boltzmann 
equation (DVBE) based method. Once the DVBE model is determined, the fluid flows can be simulated 
through solving the Boltzmann BGK equaiton directly. The number of DVBE and expression of 
distribution functions are determined according to specific physical problems. Recently, distribution 
functions based on spherical function and Hermite expansion are two popular types in high-speed flows. 

Although LBM has been well developed in compressible flows, there is a very few 3D compressible LB 
model, especially for compressible Navier-Stokes equations with a flexible specific-heat ratio and Pr 
number. Kataoka and Tsutahara presented a D3Q15 model for compressible Euler equations[2]. This 
model is only for subsonic flow. Chen et al. improved Kataoka and Tsutahara's model for high-speed 
flow[3]. Watari and Tsutahara proposed a D3Q73 model for Euler equations, which can achieve Mach 
number 1.7[4]. Li et al. developed Qu et al.'s D2Q13 model[5] to D3Q25 model for compressible Euler 
equations[6]. He et al. proposed a 3D DDF LB model for compressible Navier-Stokes equations[7]. It 
can be seen that most 3D compressible LB models are for Euler equations. If the treatments of the 
existing 2D model for Navier-Stokes equations are complicated, their 3D models will become much 
more complex. 

In this paper, two 3D double-distribution-function (DDF) LB models based on spherical function and 
Hermite basis for high-speed viscous flow are studied. Moreover, an artificial viscosity is introduced into 
the Boltzmann-BGK equation to enhance the latter model for capturing shock waves. The rest of the 
paper is organized as follows. In Section 2, the basic method for constructing DDF LB model is described, 
and two 3D models are given. In Section 3, numerical simulations are carried out for some  

2. Numerical method 

2.1. Coupled double-distribution-function approach 

The DDF model with a distribution function for density and another for energy, was used for 
compressible LBM by Li et al. The evolution equations for density and total energy are as follows 
respectively 
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Where f  is the density distribution function and h is the total energy distribution function, 
eqf  and 

eqh  are the corresponding equilibrium distribution functions, e is the discrete particle velocity in 

direction, u  is the macroscopic velocity, f and h are density and energy relaxation times, and hf  is 

defined as ( )hf h f f h    = − . 

The Prandtl number of the system can be made arbitrary by adjusting the two relaxation times as 
Pr f h = . The macroscopic variables   and u  computing from density distribution function are 

defined as follows: 

0

N

f
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
=

=                                                            (3) 
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f e 

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The equilibrium density distribution function should satisfy the following velocity moment condition to 
recover the compressible continuity and momentum equations: 

         ,eqf


=                                                          (5a) 
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The equilibrium total energy distribution should satisfy the following velocity moment condition: 

         ,eqh E

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Where
22 2E bRT u= + is the total energy.  

So far, the framework of coupled DDF LB approach for high-speed with flexible specific-heat ratio and 

Pr number is given. Once the DVBE model, in which the density distribution function 
eqf  and the total 

energy distribution function 
eqh  satisfy eqs (5) and (6) respectively, is determined for 3D case, the 

coupled DDF LB model is established. 

2.2. Discrete velocity Boltzmann equation model 

In this subsection, we show two DVBE models for 3D DDF LB model, in which equilibrium distribution 
functions are obtained from Spherical function and Hermite basis, respectively. 

2.2.1. Spherical function-based model 

D3Q25 DVBE model is adopted for the equilibrium density distribution function. 
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where 3 cc RT= is the characteristic speed of the lattice fluid, in which cT  is the characteristic 

temperature, and the subscript FS  denotes a fully symmetric set of points. 

The 3D equilibrium density distribution functions based on spherical function are given by 
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and others are 
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where xu u c= , yv u c=  , zw u c=  and cr T T= . Besides, the equilibrium total energy distribution 

function of the model has the relationship with corresponding equilibrium density distribution function 
as: 

         
2

[ ( ) ] ,eq eq p
h E e f RT

c
   = + −  +u u                                        (9) 

where 0 =0 , 1,2, ,6 5.0 14 = − , 7,8, ,18 1.0 7 = −  and 19,20, ,24 1.0 14 = . 

2.2.2. Hermite expansions-based model 

In the Hermite expansion approach, the equilibrium distribution function can be determined by 
projecting the Maxwellian function onto the tensor Hermite polynomial basis in terms of the particle 
velocity and up to a certain order. As pointed out by Shan et al., the Hermite expansion approach allows 
for simulations of high Mach number flows. Li et al. introduced this method into the DDF LB approach 
and formulated a thermal model on standard lattices with D2Q9 model. Following this idea, we adopted 
D3Q27 and D3Q39 standard DVBE model for the 3D coupled DDF compressible model. 

The discrete velocities of D3Q27 are given by 
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where 3 cc RT= . And the discrete velocities of D3Q39 are given by 

         

( )

( )

( )

( )

( )

( )

0,0,0 , 0,

1,0,0 , 1,2, ,6,

1,1,1 , 7,8, ,14,

2,0,0 , 15,16, , 20,

2,2,0 , 21,22, ,32,

3,0,0 , 33,34, ,38,

FS

FS

FS

FS

FS

c

c
e

c

c

c















=


=


=
= 

=


=

 =

                                       (11) 

where 3 2cc RT= .  

In order to satisfy Eqs. (5) and (6), third-order and second-order Hermite expansion are used for 
eqf

and 
eqh , respectively[10]. Therefore, they can be written as follows: 
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where ce e RT = , cRT=u u , cT T =  and D is the spatial dimension.  

2.2.3. Artificial viscosity 

We found that many discrete velocity models on Hermite basis are very dispersive and have a strong 
“oscillating effect” especially near the discontinuities, which results in weak ability of capturing shock 
waves. For this problem, an artificial viscosity is introduced into present LB model when describing 
system with shock wave. The artificial viscosity is able to suppress the tendency oscillation and to limit 

the generation of wiggles and overshoots near shock waves. The artificial viscosity term for Eq. (1)  F  

and Eq. (2) H  are given by[11]: 
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where ir  is the grid length along i direction, ( )1i i −  is artificial viscosity coefficient, in which

i i iu t r =   , and ( ) ( )1 1 1 12 2iI iI iI iI iI iI iIp p p p p p  + − + −= − + + +  is a switching function that its value is 

close to 1 in shock while it is close to 0 in other part, in which λ is a parameter that can effect the 

amplitude. Thus, the artificial viscosity is effective near the shock waves only. F  and H  are directly 

added to the right side of Eq. (1) and Eq. (2), respectively. 

3. Numerical results 

In this section, the two 3D coupled DDF model are tested by several numerical cases with compressible 
flows ranging from 1D to 3D. For convenience, the spherical function based model and the Hermite 
expansions based model are called model I and model II, respectively. To solve Eqs. (1) and (2) 
numerically, the first-order implicit-explicit(IMEX) Runge-Kutta scheme[8] is employed for the time 
discretization and the non-free-parameter dissipation (NND) scheme, which is a total variation 

diminishing (TVD) scheme, is applied for the space discretization. The reference density 0 , the 

reference temperature 0T , the reference length 0L , and the time spacing t  are used in the 

simulations, and the reference velocity and the reference pressure are defined as 0 0u RT= , 0 0 0p RT= . 

Here, 
3

0 1.165kg m = , 287 ( )R J kgK= , 0 303T K= ,
-5=1.86 10 ( )kg ms  , 0 0p = . The specific heat 

ratio is set to be 1.4 with b=5 and the Prandtl number is set to be 0.71. 

3.1. Riemann problems 

The 1D Riemann problem is a typical case for testing numerical methods in simulation of compressible 
flows. We conducted the Sod shock-tube with initial condition as follows: 

( ) ( )0 0 0 0

1
,u , 1.0,0,1.0 , 0

2
x u p p x L  =    

( ) ( )0 0 0 0

1
,u , 0.125,0,0.1 , 1

2
x u p p x L  =    

In the simulations, 04 3cT T=  is set for model I and 02cT T=  is set for model II, and 0=30000t  . 

Simulation results by model I and model II of the Sod shock tube at 00.1644t t=  are given in Fig. 1. 

Generally speaking, the results by the two models agree well with the analytical solutions. Both the two 

models have some numerical fluctuations about between 0 0.6x L =  and 0 0.8x L = , especially for the 

temperature distribution. This may be caused by the time discretization that just first-order IMEX 

Runge-Kutta scheme we used. Besides, a little deviation appears at about 0 0.5x L =  for model II. The 

magnified results between 0 0.46x L =  and 0 0.54x L =  are shown in Fig. 2. Although the same FD 

schemes the two models used, results by model II disagrees with analytical solutions at about 

0 0.5x L = , while model I still performs well. That is, model II is not very good at simulating 

compressible flows with discontinuity. 
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Fig 1. Simulation results by model I and model II of the Sod shock tube for (a) density, (b) velocity, 
(c) pressure, (d) temperature. 

 

Fig 2. Comparisons of discontinuity between model I and model II in Sod shock tube simulation for 
(a) density, (b) velocity, (c) pressure, (d) temperature. 

To enhance the ability of model II, the artificial viscosity is estimated by tuning coefficient  . It should 
be noticed that =0  means the artificial viscosity term is not working. The magnified temperature 
results at the discontinuities are given in Fig. 3, because the deviations in temperature result is larger. 
As shown in Fig. 3(a), D3Q27 with =0  and D3Q27 with =15  encounter different degrees of 
deviations near the discontinuity, while D3Q27 with =2  and D3Q39 with =0  agree well. The similar 
conclusion can be drawn from Fig. 3(b). In addition, the D3Q27 with =2  performs a little better than 
D3Q39 with =0  at discontinuity near x/L0=0.8, while the latter is more stable and accurate between 
the two discontinuities. Through this comparison, D3Q39 model shows better numerical performance 
than D3Q27 model. Moreover, the appropriate artificial viscosity can enhance ability for capturing 
discontinuity. 
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Fig 3. Comparisons of discontinuity of the models in Sod shock tube simulation for temperature 
result at (a) 0.47<x/L_0<0.52 and (b) 0.63<x/L_0<0.80. 

 

3.2. Regular shock reflection 

A steady 2D compressible flow, a regular shock reflection on a wall, is considered in this test. This 
problem involves three flow regions separated by an oblique shock and its reflection from a wall. The 
incoming shock wave of Mach number 2.9 has an incident angle to the wall. The Dirichlet conditions 

( ) ( )

( ) ( )

0 0 0 0 0

0 0 0 0 0

, u ,u ,u , | 1.0,2.9,0,0,1.0 1.4 ,

, u ,u ,u , | 1.69997,2.61934,-0.50633,0,1.52819 .

x y z Left

x y z Top

u u u p p

u u u p p

 

 

=

=
 

are imposed on the left and top boundaries, respectively. The bottom boundary is a reflecting surface. 
The right boundary is supersonic outflow where the zeroth-order extrapolation is used. The periodic 
boundary condition is applied in the z direction. Nx x Ny x Nz = 150 x 50 x 5 lattices are used. 

Figure 4 gives numerical results of regular shock reflection problem by model I. In the simulations, 

Tc=2T0 and 0=20000t  . As shown, the density, velocity, pressure and temperature contours in which 

the shock reflection is well captured. 

 

Fig 4. Numerical results of regular shock reflection problem by model I for (a) density, (b) velocity 
in x direction, (c) pressure, (d) temperature. 

Model II with D3Q27 model failed when solving this problem. Then the artificial viscosity is turned on. 
Figure 5 gives distribution of ux and T at 500 t . The fluctuations of flow fields are caused by the poor 
ability of D3Q27 model for shock wave. The flow fields become more stable as the increasing  . 
Nevertheless, even   is up to 40, the flow fields are still not stable enough. Too large   will impact 
numerical precision. Thus, present LBM with D3Q27 model is not suitable for describing shock wave 
even with the help of artificial viscosity. 
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Fig 5. Numerical results of regular shock reflection problem by D3Q27 model at 500 t  for ux (left) 
and T (right), where (a)(b) =5 , (c)(d) =20 , and (e)(f) =40 . 

Figure 6 is the results by D3Q39 model II without artificial viscosity. ux and T at 500 t  are much stable 
than the results by D3Q27 model with artificial viscosity shown in Fig. 6. However, large fluctuations 
appear at 1700 t . So artificial viscosity is also turned on as given in Fig. 7. ux and T at 2000 t  with 

=5  and =20  are compared. Both two simulations give clear reflected shock wave result, where 
shock waves by =20  (Fig. 7 (c)(d)) are much stable than the one by =5  (Fig. 7 (a)(b)). The incident 

angle is arctan(48/86)=29.17°, which agrees well with the result 29.05°by Li et al.[9] 
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Fig 6. Numerical results of regular shock reflection problem by D3Q39 model with =0  for ux (left) 
and T (right) at (a)(b) 500 t , and (c)(d) 1700 t . 

 

Fig 7. Numerical results of regular shock reflection problem by D3Q39 model for ux (left) and T 
(right) at 2000 t  with (a)(b) =5 , and (c)(d) =20 . 

3.3. Explosion in a box 

The case of 3D explosion in a box[12], in which a spherical shock wave expands in an enclosed box, is 
tested by the two models. It is an unsteady 3D compressible flow and the reflected shocks interact in 
a complex manner. The computational domain is [0,1.0] x [0,1.0] x [0,1.0]. At the initial time, the 
velocity is zero; 

0 =5.0   and p/p0=5.0 are set in a sphere with radius 0.3, whose center is at (0.4, 

0.4, 0.4), and 
0 =1.0   and p/p0=1.0 are set for others. 

In the simulations, a Nx x Ny x Nz = 100 x 100 x 100  mesh is used. The rest parameters are set to be 
Tc=T0, L0=1m and 

0=20000t  . The model I successfully completes the 3D explosion simulation, while 

model II becomes unstable after t=0.25t0. The density isosurfaces at t=0.125t0, 0.25t0 and $0.375t0 
are given in Fig. 8. Figure 9 gives density contour at z=0.4 and t=0.5t0 by model II of D3Q27 with 

=10 , D3Q39 with =0  and D3Q39 with =10 . They are compared with result in Ref.[12], and they 

all agree well. 
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Fig 8. Density isosurfaces of 3D explosion in a box: (a) t=0.125t0, model I, (b) t=0.125t0, model II, 
(c) t=0.125t0, Ref.[12], (d) t=0.25t0, model I, (e) t=0.25t0, model II, (f) t=0.25t0, Ref.[12], 

(g) t=0.375t0, model I, (h) t=0.375t0, Ref.[12].  
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Fig 9. Density contour of 3D explosion in a box at z=0.4 and t=0.5t0: (a) Ref. [12], (b) D3Q27 with 

=10 , (c) D3Q39 with =0 , and(d) D3Q39 with =10 .  

3.4. Supersonic boundary layer 

The compressible boundary layer is a basic and important flow feature in compressible flows. In our 
previous work, the supersonic boundary layer has been simulated by a 2D LB model[13]. Here, present 
3D model is used to simulate the supersonic laminar flow over an insulated flat plate with freestream 
conditions as Mach number =2Ma

, Reynolds number 
0 =296000/mR L

, Pr=0.72, =1.4  and 

=293KT
. 

Since there is no shock wave in this case, D3Q39 model without artificial viscosity is adopted with 
Tc=3.5 and 

03.5t  = . The reference length is set to be L0=1.0m, which is also the simulation length 

in x-direction. The length in y-direction Ly and z-direction Lz are 0.1m and 0.2m. The simulations are 
carried on a Nx x Ny x Nz = 100 x 100 x 40 grid which is equally spaced in the x- and z-direction, and 

stretched in the y-direction, with an initial y-spacing of 59.46 10y − =  m from the plate.. The viscosity 

is not a constant here, which obeys Sutherland’s formula. The boundary conditions are composed of 
an adiabatic wall boundary along the bottom boundary(y=0), Dirichlet condition with freestream values 
on the inlet boundary(x=0), supersonic outflow along the outlet(x=Nx) and upper boundaries(y=Ny), 
period conditions along the two sides(z=0, z=Nz). 

Figure 10 shows results of supersonic boundary layer for distributions of p, ux and T. In the pressure 
distribution, an expansion wave is formed by the edge of flat plate. For ux, the velocity near the bottom 
wall becomes much smaller to develop into supersonic boundary layer. In Fig. 10(c), temperature near 
the bottom wall is much higher, since the momentum here is transferred into the heat energy. The 
velocity profiles of boundary layer at different positions are adopted to compare with the theoretical 
result by Van Driest[14] in Fig. 11. In general, they all agree well. The small deviation appears at 

xu u
 >0.8, which also can be observed in our previous work with another 2D LB model. This may be 

caused by NND scheme, since the result by second order upwind scheme can improve it effectively[13]. 
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Fig 10. Numerical results of supersonic boundary layer for distributions of (a) p, (b) ux, and(c) T.  

 

 

Fig 11. Velocity profiles in a Ma=2 supersonic laminar boundary layer over a flat plate at different 
positions. 

 

4. Numerical results 

In this work, two 3D DDF LB models for compressible flows with flexible specific heat ratio and Pr 
number are developed. The spherical function based D3Q25 model, and Hermite expansions based 
D3Q27 model and D3Q39 model are used. Several numerical simulations of some typical compressible 
flows ranging from 1D to 3D are conducted to test the two 3D models. They are both capable for 
supersonic flows, while the latter is not very suitable for compressible flows with shock wave. An 
artificial viscosity is introduced to enhance the model for capturing shock waves. With the help of 
artificial viscosity, Hermite expansions based LB model with D3Q39 model can handle the discontinuity 
better. However, D3Q27 model with artificial viscosity is still not suitable for describing shock wave. 
This work presents alternative LB models for 3D supersonic flows and shows convenience and simplicity 
of DDF LB approach for complex compressible flows. 
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