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Abstract  

The development of hypersonic flight control system is a challenging task, because of the tightly 
coupled, highly nonlinear and notoriously uncertain nature of hypersonic vehicle(HV) dynamics. 
Differential flatness method is applied to the linearization of the longitudinal model of HV. A finite 
time convergent controller is designed for the nominal linearized model. Then an integral sliding 
mode controller is added to deal with the uncertainty of the system. In addition, a discrete linear 
tracking differentiator(TD) is used to extract high order differential signal of the system, which can 
avoid the high order differential signal polluted in the numerical calculation. A case study is presented 
to illustrate the capability of the proposed control method. 

Keywords: hypersonic vehicle, differential flatness, finite time convergent, sliding mode control, 
discrete linear tracking differentiator 

Nomenclature 

States M – Moment 
V – Velocity Control input 
h – Altitude   – Elevator 
 – Angle of attack  – Throttle rate 
  – Flight path angle Aircraft parameters 
q – Pitch rate m – Mass 
Force and moment Iyy – Pitching moment of inertia 

L– List Other parameters 
  – Drag  – Damping coefficient 
T – Thrust    – Natural frequency 
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1. Introduction 

With the rapid development of the demand for weapons, the hypersonic vehicles (HVs) have 
attracted more and more attention owing to the high-speed and prompt global response. The 
development of hypersonic flight control systems face the challenges stemming from the tightly 
coupled, highly nonlinear and notoriously uncertain nature of HSV dynamics. A suitable control 
system is needed to make HVs realize hypersonic stable flight. 

There have been several approaches for the control of hypersonic vehicles[1-7]. Some of them 
proposed reference command tracking controllers for the linearized dynamics of hypersonic vehicles[1], 
and others designed controllers directly for the nonlinear dynamics of hypersonic vehicles, such as 
some adaptive sliding controllers[2][3], fuzzy controllers[4], etc. The controllers above had achieved 
good results. 

In recent years, the theory of differential flatness[8] got a lot of attention due to its small amount of 
calculation and the characteristics of high efficiency. Domestic scholars apply it to the aircraft flying 
trajectory planning and control[9][10]. The advantage of differential flatness theory is that the nonlinear 
system states and control inputs can be expressed by the flat output and its limited order differential 
items. The physical meaning of the intermediate variables are more intuitive, and when a nonlinear 
system is differential flatted, all the states and control inputs will be seen after the trajectory planning, 
and the reference trajectory  will be shown before the simulation. 

In this work, differential flatness method is applied to the linearization of the model of HV. A finite 
time convergent controller is designed for the nominal linearized model. Then an integral sliding 
mode controller is added to deal with the uncertainty of the system. In addition, a discrete linear 
tracking differentiator(TD) is used to extract high order differential signal of the system, which can 
avoid the high order differential signal polluted in the numerical calculation. 

2. Hypersonic Vehicle model 

In this paper, the research object is longitudinal model of a generic air-breathing hypersonic vehicle. 
Thrust actuator second-order dynamic link is considered. 

The longitudinal model is given in [11]: 
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3. Controller Design 

3.1.  Linearization of hypersonic vehicle based on differential flatness 

Definition 1: For some differential flat nonlinear dynamic system, by choosing appropriate flat output 
can make the linearization of nonlinear system. That is, if a set of system output can be found, when 
all state variables and input variables can be determined by this set of output and its limited order 
differential, the system is differential flat system. It can be expressed in mathematical form: 

For nonlinear systems 

                             ( ) ( ( ) ( ))t f t , tx x u                                                           (7) 

Where x is the state vector, u is the input vector, f is a continuous smooth function. 

If there is a set of output z meet 
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Then the system is differential flat, z is flat output, ( =1, , )ir i m  is the relative order of zi. 

Consider the hypersonic vehicle model, V and r  are chosen as flat output, that is,  

1z V                                                                (11) 

2z r                                                                (12) 
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In this paper, we consider the vehicle system characteristics in cruise state. The vehicle keep a small 
angle of attack. In order to get the analytical solution of  , here assuming that 0sin   and 

1cos  . 

Eq.(1) and (2) can be written into 
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From Eq.(16),   is expressed as follows: 
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Substituting Eq.(14) and Eq.(19) into Eq.(4), we obtain the last state 
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So far, all the states are expressed by the flat outputs and their limited derivatives. 
Then we need to express the control inputs by flat outputs. 
Due to space limitations, the similar derivation process will not be repeated. Here gives the result 
directly: 
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Substituting Eq. (23), Eq. (24) and Eq. (25) into Eq. (6), we obtain the expression of c . 

Through the derivation, all the states and control inputs are expressed as follows: 

1 1 1 1 2 2 2 2 2(z ,z ,z ,z ,z ,z ,z ,z , z )
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We got the states and control inputs expressed by flat outputs and their limited derivatives. It is 
proved that the system is differential flat.   

If the model is differential flat, the linear feedback exist which can make the nonlinear model input-
state linear. In this work, we set the height and speed of desired trajectory to be constant, for 
verifying the effectiveness of the differential flat theory. Because the tracking task is straightforward, 
concise state feedback is used to realize the trajectory tracking control. In final version, more 
challenging trajectory will be tracked, and controller design form may also be changed. 

The linear model of system can be written into: 
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3.2. Finite time convergent controller design 

Consider the r-th order nominal system: 

 ̇                                                                  (28) 

 ̇                                                                 (29) 

Where i=1,2,…,r-1,     
(   )    

(   ) , d is the uncertainty of the system. 

First, when d=0, a finite time convergent controller under nominal state is designed as follows. 
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We noticed that the controller need high order derivative signal iz  . In the actual computer numerical 
calculation, the signal will always be polluted by some noise. Therefore, extracting the each order 
differential signal reasonably becomes an important link in the simulation. In this paper, tracking 
differentiator is used to realize the precise calculating of each order differential signal. Tracking 
differentiator track the dynamic characteristic of the input signal quickly, and give the approximate 
differential signal. 

For the first order and second order differential signal of 1z  in (28)(29), discrete linear TD is designed 
as follows: 
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For the first order, second order and third order differential signal of 2z  in (28)(29), discrete 

linear TD is designed as follows: 
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Where k  and 1k   are sampling times, w  is the input, namely cV  and V , ch  and h . r  is the speed 

factor, which for the four types of input can be respectively written as vr  and vcr  , hr  and hcr  . p  is 

the integral step, which for the four types of input can be respectively written as vp  and vcp  , hp  and 
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hcp  . 
1 2 3 4x ,x ,x ,x  is respectively the original signal tracking, first order differential, second order 

differential and third-order differential. Tracking differentiator have played an important role in 
solving differential and instruction filtering.  

3.3. Sliding mode controller design 

Consider the integral sliding mode variable defined as follows: 

     
0

t

rs e e t v d                                                    (34) 

Theorem 2 Consider the perturbed system, if the sliding mode controller is designed as follows: 

 sgnv v K s                                                        (35) 
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K d                                                           (36) 

Where 
max

d  is the upper limit of uncertainty, and  is a small constant. 

The sliding mode is established for perturbed system in finite time. 

Proof Defining the Lyapunov function 21

2
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So the perturbed system (28)(29) can evolve on the sliding surface. This completes the proof. 

The robust stability tracking of the longitudinal motion of HV is guaranteed with the controller 
(26)(30)(35), in which the uncertainties and external disturbance are rejected. 

4. Simulation 

In order to verify the applicability of the proposed method, a hypersonic vehicle velocity and attitude 
tracking control instance is presented here. In this work, three degrees of freedom nonlinear 

longitudinal dynamics model is considered. The vehicle flies at the initial speed of Mach number 15. 
The detailed initial conditions of the vehicle is given in table 1. 

Table 1. The detailed initial conditions 

Variable Value Variable Value 

V  6060 ft/s S  3603 ft2 

h  110000 ft c  80 ft 

  0.1517   0.243*10-14 slugs/ft3 

m  9375 slug   1.39*1016 ft3/s2 

q  0   0.0116 rad 

  0 R  20903500 ft 
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In order to verify the robustness of the controller, parameter uncertainty is considered in the model, 
and the form of uncertainty is expressed in Table 2. 

Table 2 Uncertainty parameters model 

Parameter class Distribution Range of error 

Aerodynamic coefficient Normal distribution 30% 

Aerodynamic moment coefficient Normal distribution 30% 

Atmospheric density Normal distribution 30% 

 
Set the desired state 6160cV ft / s and 112000c th f . 

The parameters of the proposed controller are designed as follows: 
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3 15vk  . 

In addition, the parameters of the discrete linear TD are designed as 1000v vc h hcr r r r    , and the 

integral step 0.001p steptime s  . The comparative simulation results are shown in Fig. 1-Fig 3. 

 

 
Fig. 1 The velocity and attitude tracking errors 

 
Fig. 2 The control quantities 

 

 

 
Fig. 3 Other variable curves 
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As seen in Fig. 1, the proposed controller provides a good tracking for the velocity and altitude 
commands in 5 seconds. The two control variables have a larger peak value in the process of 
acceleration and climbing, and tend to a smaller stable value after the system is stable. Other states 
also converged in a short time, and the change process did not exceed the expected limit. 
Simulation results show that the proposed control method achieves finite-time high-accuracy tracking 
and has good robustness. 

5. Conclusion 

In this paper, a framework has been proposed for the development of a finite time sliding mode 
controller based on differential flatness for the longitudinal model of hypersonic vehicle. The salient 
features of the proposed approach consist in the obvious physical significance of derivation process 
and all the desired states and control inputs obtained in advance. The integration of the integral 
sliding mode solves the problem of system robustness caused by the exact model derivation, and the 
TD solve the problem of high order differential signal extraction. Current work is addressing the 
implementation of stable tracking of an accelerating and a climbing trajectory. The simulation results 
under multiple non nominal conditions will be given in the full text. 
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