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Abstract 

In order to address false modal parameters identification caused by the uncertainty of the selection of 
adjacent points in manifold learning, a novel modal identification method for structural dynamics using 

sparse Locally Linear Embedding (LLE) method is proposed. Compared with conventional LLE algorithm, 
this method can adaptively find the neighbors and weight coefficients by solving a sparse optimization 

problem, which assumes the neighbors that lie in the same manifold and the low dimensional manifold 
embedding is extracted from observation space with high dimensional then. Numerical simulation and 

experiment results illustrate that the proposed method can effectively preserve the neighborhood 

structure of high dimensional response signals with small nonzero weights, and the modal parameters 
(modal shapes and modal frequencies) can be accurately identified in comparison to classical LLE 

algorithm or its various improvement strategies. In addition, the proposed method is more robust than 
various improvement strategies under different noise levels. 

Keywords: Modal Identification, Dimension Reduction, Manifold Learning, Locally Linear Embedding, 
Sparse Representation 

Nomenclature  

SLLE – Sparse Locally Linear Embedding 

MAC – Modal assurance criterion 

𝐐𝑖 – Proximity inducing matrix 

𝐕 – Linear transformation matrix 

𝐖 – The weighted matrix 

𝐗(𝑡) – The structural response matrix 

𝐗𝑖 – The normalized matrix 

𝐘 – Low dimensional embedding matrix 

𝚽 – Modal shape matrix 

𝒄𝑖 – Sparsity coefficient vector 

1. Introduction 

The modal identification is the key basic issue to achieve precise design and safety assessment of high 

speed aircraft structures. In order to guarantee the quality and safety of engineering structures in the 
design and application, it is necessary to have a comprehensive understanding of the dynamic 

characteristics of structures, and the structural dynamics characteristics can be also obtained by modal 
parameters identification. In addition, for large complex engineering structures, especially for aerospace 

vehicles, the load is often difficult to measure. From the inverse problem point of view, only the 
operational modal parameters identification method based on output-only structural response data can 

be adopted. Therefore, it is of great significance to develop new operational modal parameter 

identification method only using the structural responses. 

Over the past ten years, multivariate statistical signal processing techniques are popular and introduced 

into structural dynamics analysis, such as blind source separation. After that, the BSS techniques have 
received much attention in structural dynamics field. Therein, Independent component analysis (ICA) 

[1] and second order blind identification (SOBI) [2] are two popular approaches, which are based on 

fourth order and second order statistics, respectively. The manifold learning is a hot topic in machine 
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learning. In recent years, manifold learning is also introduced into the modal identification of structural 

dynamics, which is also favored by some researchers. Wang et al. [3] proposed the operational modal 
identification method following Principal Components Analysis (PCA) for simple supported beam, in 

which the modal parameters identification is converted into principal component decomposition problem. 
The Locally Linear Embedding (LLE) is an important data dimensionality reduction algorithm, which has 

been widely applied in face recognition [4], fault diagnosis [5], image retrieval [6] and other related 

fields. A method based on LLE algorithm in time domain using output-only response data is proposed 
for modal parameters identification by Bai [7], which regards the response data as a high-dimensional 

data set and the modes of structure as the essential structure and the inherent characteristics of high-
dimensional data set. The LLE algorithm even has better identification performance on nonlinear 
structures. However, the choice of primary parameter 𝐾 of LLE algorithm is fixed and is artificially 

selected. In practice, the setting of the parameter 𝐾 has great influence on the performance of the 

algorithm, and it is more difficult to appropriately choose. If 𝐾 is chosen too large, the neighborhoods 

could no longer be locally linear. If 𝐾 is chosen too small, local patches are unable to preserve the 

topological structure of the data set as a lower-dimensional embedding [8]. In 2011, Elhamifar [9] 

proposed a new manifold learning algorithm based on Sparse Manifold Clustering and Embedding 

(SMCE), which chooses the neighbors and weights automatically by solving sparse optimization problem 

and is more suitable for the solution of engineering problem. 

In summary, to determine the appropriate neighbors, based on LLE algorithm and combined with the 
thought of SMCE, this paper proposed a novel sparse Locally Linear Embedding method for modal 

identification. Meanwhile, this study explores the modal identification results of several other different 

improvement strategies of LLE algorithm [10, 11]. Experiment results show that the proposed method 
can adaptively find the neighbors and weight coefficients than classical LLE algorithm. Compared with 

other improvement strategies, the proposed method has better recognition accuracy and robustness. 

2. Modal parameters identification using Sparse LLE 

2.1. The theory of modal identification 

For an n-degree-of-freedom linear system, the governing equation of motion can be described as 
follows: 

 𝐌�̈�(𝑡) + 𝐂�̇�(𝑡) + 𝐊𝒙(𝑡) = 𝒇(𝑡) (1) 

where 𝐌, 𝐂 and 𝐊 ∈ ℝ𝑛×𝑛 are the mass, damping and stiffness matrices, respectively. �̈�(𝑡), �̇�(𝑡) and 

𝒙(𝑡) are the acceleration, velocity and displacement vector, respectively. 𝒇(𝑡) is the external force 

vector. Based on the theory of modal expansion, the time domain responses 𝒙(𝑡) = [𝑥1(𝑡), … , 𝑥𝑛(𝑡)]𝑇 

for a lightly damped system in modal coordinates can be decomposed as follows: 

 𝒙(𝑡) = 𝚽𝐪(𝑡) = ∑ 𝝋𝑖
𝑛
𝑖=1 𝑞𝑖(𝑡) (2) 

where 𝚽  is mode shape matrix which consists of mode shape vector 𝝋𝑖 ∈ ℝ𝑛 , and 𝒒(𝑡) =
[𝑞1(𝑡), … , 𝑞𝑛(𝑡)]𝑇 is a modal response vector which composed of real value. In addition, when the 

natural frequency of each order is unequal, the modal shape vector and modal response vector meet 

the following relationship: 

 𝝋𝑖
𝑇𝝋𝑗 = {

0, 𝑖 ≠ 𝑗
1, 𝑖 = 𝑗

 (3) 

 𝐸(𝐪(𝑡)𝐪𝑻(𝑡)) = diag(𝑞1(𝑡), … , 𝑞𝑛(𝑡)) = 𝚲𝑛×𝑛 (4) 

where 𝚲 represents a diagonal matrix. 

2.2. Locally Linear Embedding algorithm 

The LLE algorithm is an unsupervised dimensionality reduction algorithm that preserving the same 

topology structure from high dimensional to low dimensional data sets. The main idea is to use the 

local linearity of data to approximate the global linearity. The principle of LLE algorithm is summarized 
in [12]. The algorithm can be summarized as following three steps.  

(I) Find neighbours in high dimensional space. 

http://www.baidu.com/link?url=iPhwGhBM2BKZrccOQb0fbLzfrw4BCAyLH8TvXz3UZaI9mta15M7YE-2TlVZZh3foMTtm1b4bxAIrd-qQt8xLjo61MTm5RLgSxIa1nDGEpkG
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For a given high dimensional data 𝐗 = [𝒙1, … , 𝒙𝑛] ∈ ℝ𝐷×𝑁 , the 𝐾 neighbours data sets can be 

established by computing the Euclidean distances for each data point 𝒙𝑖. 

(II) Compute the reconstruction weight coefficients. 

After establishing the neighbours data sets, the reconstruction weight coefficients 𝑤𝑖𝑗  can be 

resolved by the following optimization formula, where 𝐖 is the weighted matrix consisting of 𝑤𝑖𝑗. 

 min
𝑤𝑖𝑗

∑ ‖𝒙𝑖 − ∑ 𝑤𝑖𝑗𝒙𝑗
𝐾
𝑗=1 ‖

2𝑁
𝑖=1   

    𝑠. 𝑡. ∑ 𝑤𝑖𝑗
𝐾
𝑗=1 = 1                        (5) 

 (III) Calculate the low embedding coordinates. 

Finally, the low dimensional data matrix 𝐘 is solved by the following optimization formula in ℝ𝑑×𝑁, 
where 𝐈𝑑 is unit matrix. 

 min
𝒚𝑖

∑ ‖𝒚𝑖 − ∑ 𝑤𝑖𝑗𝒚𝑗
𝐾
𝑗=1 ‖

2𝑁
𝑖=1  

                                     𝑠. 𝑡.  𝑁−1 ∑ 𝒚𝑖𝒚𝑖
𝑇𝑁

𝑖=1 = 𝐈𝑑 ,   ∑ 𝒚𝑖 = 0𝑁
𝑖=1                   (6) 

2.3. Sparse Locally Linear Embedding algorithm 

The Sparse Locally Linear Embedding (SLLE) takes a full combination of the advantages of the LLE 

algorithm and SMCE model into account. For sparse LLE algorithm, the main principle is to find the 
nearest neighbors and weights automatically by the optimization model of SMCE, and the low 

dimensional embedding representation is computed by the sparse weight coefficient matrix then. The 

detail derivation process is illustrated as follow.  

As described in Ref. [9], given a response data set 𝐗(𝑡) = [𝒙1, … , 𝒙𝑛] ∈ ℝ𝐷×𝑁 from 𝑛 different manifolds, 

which are marked as {𝑀𝑙}𝑙=1
𝑛 . Let the 𝑁𝑖  be the neighborhood set of point 𝒙𝑖 . In general, the 

neighborhood 𝑁𝑖 contains points from 𝑀𝑙 as well as other manifolds. To exclude the points in other 

manifolds, for all points 𝑖 there exists 𝜀 ≥ 0 such that the nonzero entries of the sparsest solution of 

Eq. (7) corresponds to the neighbors of 𝒙𝑖 from 𝑀𝑙. 

 ‖∑ 𝑐𝑖𝑗𝑗∈𝑁𝑖
(𝒙𝑖 − 𝒙𝑗)‖

2
≤ 𝜀, ∑ 𝑐𝑖𝑗𝑗∈𝑁𝑖

= 1 (7) 

The Eq. (7) can be translated into a weighted quadratic programming problem as Eq. (8) described. 
Then, the sparsity coefficients {𝒄𝑖}𝑖=1

𝑁  can be computed by Eq. (8) using linear programming technique 

[13].  

 min
1

2
‖�̃�𝑖𝒄𝑖‖

2

2
+ 𝜆‖𝐐𝑖𝒄𝑖‖ 

                                    𝑠. 𝑡.  𝟏𝑇𝒄𝑖 = 1                                                        (8) 

The parameter 𝜆 is a regularization parameter, which trades off the sparsity of the solution and the 

reconstruction error. The 𝐗𝑖 and 𝐐𝑖 are expressed as follows: 

 𝐗𝑖 = [
𝒙1−𝒙𝑖

‖𝒙1−𝒙𝑖‖2
, … ,

𝒙𝑛−𝒙𝑖

‖𝒙𝑛−𝒙𝑖‖2
] ∈ ℝ𝐷×(𝑁−1), 𝐐𝑖 =

‖𝒙𝑗−𝒙𝑖‖
2

∑ ‖𝒙1−𝒙𝑖‖2𝑡≠𝑖
∈ (0,1] (9) 

Then, the weight coefficient 𝒘𝑖 = [𝑤𝑖1, … , 𝑤𝑖𝑁]𝑇 can be obtained by sparsity coefficients, and the low 

dimensional manifold embedding 𝐘(𝑡) = [𝒚1, … , 𝒚𝑁] are expressed as follows: 

 𝑤𝑖𝑖 = 0, 𝑤𝑖𝑗 =
𝑐𝑖𝑗/‖𝒙𝑗−𝒙𝑖‖

2

∑ 𝑐𝑖𝑡/‖𝒙𝑡−𝒙𝑖‖2𝑡≠𝑖
, 𝑗 ≠ 𝑖 (10) 

 min
𝒚𝑖

∑ ‖𝒚𝑖 − ∑ 𝑤𝑖𝑗𝒚𝑗
𝐾
𝑗=1 ‖

2𝑁
𝑖=1  

                                    𝑠. 𝑡.  𝑁−1 ∑ 𝒚𝑖𝒚𝑖
𝑇𝑁

𝑖=1 = 𝐈𝑑 ,   ∑ 𝒚𝑖 = 0𝑁
𝑖=1                   (11) 

where the indices of the nonzero elements of 𝒘𝑖 correspond to the neighbors of 𝒙𝑖 and the 𝐾 indicates 

the number of neighbors of 𝒙𝑖. 𝒚𝑖 represents the output in low dimensional space. Finally, there is the 

following relationship between high dimensional responses and low dimensional embedding. 

 𝐕 ≈ 𝐗(𝑡)𝐘(𝑡)−1 (12) 

http://www.baidu.com/link?url=iPhwGhBM2BKZrccOQb0fbLzfrw4BCAyLH8TvXz3UZaI9mta15M7YE-2TlVZZh3foMTtm1b4bxAIrd-qQt8xLjo61MTm5RLgSxIa1nDGEpkG
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where 𝐕 is a linear transformation matrix.  

2.4. Modal identification based on Sparse LLE 

Compared with Eq. (2) and Eq. (12), it is found that they have the same form of mathematical 

description. The linear transformation matrix is corresponding to modal shape matrix, while the low 

dimensional embedding is corresponding to modal shape vector. Therefore, the Spare LLE algorithm 
can be used for modal parameters identification based on matrix decomposition. The schematic diagram 

based on SLLE algorithm for modal identification is shown in Fig. 1. 

 

Fig.1 The flow chart of modal identification based on Sparse LLE algorithm 

3. Numerical simulation and experiment verification 

3.1. Numerical simulation 

In this part, a general S-Curse data set [12] is utilized to elaborate the capacity of SLLE adaptively 

determining the neighbors and weights, and effectively preserving the neighborhood structure of high 
dimensional with small nonzero weights. What’s more, the SLLE algorithm is analysed and compared 

with other improvement strategies of LLE algorithm. 

As is shown from Fig. 2(b) to 2(e), the SLLE algorithm can also effectively preserve topology structure 
with 𝜆 = 1  from three-dimensional (3D) to two-dimensional (2D) in comparison to LLE algorithm and 

its different improved strategies with the number of optimal neighbors 𝐾 = 12. Herein, to illustrate the 

SLLE method needs small nonzero weights, only the LLE algorithm is chosen to compare with SLLE. 
Moreover, the SLLE needs less nonzero weight coefficients than LLE from Fig. 3(a). The greater 𝜆, the 

sparser the weights. Meanwhile, it is found that the average number of nonzero weights using SLLE 
with different 𝐾 and 𝜆 tends to relatively stable state at the end. That is, the SLLE algorithm can 

adaptively find appropriate neighbors and weights only by setting parameter 𝜆 with a given larger 𝐾max. 

     

(a)                                       (b)                                      (c) 

http://www.baidu.com/link?url=bkTgt4BigjiYKnpBZvsaknCoNHSblgh3NQd5ViUSFDQaOje268tzNKze8gmxPahUcQeqEj4EW-yO3ZWBzP7r2QQQnhpAY7aRmCvNgCLw9yG
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(d)                                      (e) 

Fig.2 LLE and its improved algorithm applied to S-Curse data set: (a) S-Curse in 3D; (b) LLE results 
in 2D; (c) MLLE results in 2D; (d) ISO-LLE results in 2D; (e) SLLE results in 2D 

   

 (a)                                                           (b) 

Fig.3 (a) Distribution of nonzero weights using LLE and SLLE with 𝐾 = 12 and different 𝜆; (b) 

Number of nonzero weights using SLLE with different 𝐾 and 𝜆 

3.2. Experiment verification 

To validate the proposed algorithm, a cantilever steel plate is conducted with size 0.39 ∗ 0.29 ∗ 0.003m3. 

The experimental setup is built as shown in Fig. 4. The entire measurement system includes a computer, 
Polytec scanning head (PSV-400), vibrometer controller (OFV-500), junction box (PSV-400-3D), smart 

shaker (K2007E01) and data management system. The spectral lines and frequency resolution are set 

as 1600 and 0.625Hz, respectively. In experiment, 20 measurement points are arranged in structure 
and the swept frequency excitation with a minimum frequency of 0 Hz and a maximum frequency of 

2000 Hz is applied. 

In addition, to investigate the robustness of algorithm, the responses are corrupted by white Gaussian 

noise, the root mean square (RMS) amplitude of which is set to three different noise levels (0, 5%, 
10%) of the signal RMS value, respectively. Furthermore, the modal assurance criterion (MAC) which 

ranges from 0 to 1 is introduced to reflect the accuracy of modal shapes [14]. The larger the MAC value, 

the better the modal identification results. The modal shapes identification results (MAC values) based 
on different algorithms under different noise levels are shown in Table 1. The comparison of first 3 

order modal shapes is shown in Table 2. The comparison of the first three order modal frequencies 
based on different algorithms under different noise levels are shown in Table 3. As is shown in Table 

2, the modal shapes using different algorithms with appropriate preset can be well identified compared 

with experiment (Ex.). From Table 1, compared with other improved LLE algorithms with parameter 
𝐾 = 20, the identified modal shapes based on SLLE algorithm with parameter 𝜆 = 0.01 have higher 

MAC values under different noise levels. That is, the precision of modal parameters is higher by SLLE 
algorithm, which owns better robustness. As is shown in Table 3, the modal frequencies can be also be 

accurately identified by LLE and its improvement. Compared with other improved LLE, the precision of 

third order modal parameters is higher by SLLE from Table 3. Therefore, the proposed method can 

http://www.baidu.com/link?url=DxETsJW0sz0mUKfC7XXXWqOpPpRknJ3LGULY69frpo-tjOKk4l8BBzHww-9CU9vFwWVidILZpas0xFJWNgpxle1YLlGo1pfX_TmtHQQzX00qVUexDtJ8Q5UQyaPv0FBvX1M0zatNOU7hsQQqo7lUjK
http://www.baidu.com/link?url=_3Dr7__gJCz-Zn165JzCbFDGyYZ6xlT5VUWuatZc_-57GmnUhwCv7VO2e-c0da9D-IzxkssT3F-r66EcEo0kQ2EKwcFokMj10uhhdYIohoC
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effectively identify the modal parameters (modal shapes and modal frequencies) and has strong anti-

noise performance. 

       

(a)                                                   (b) 

Fig.4 The experimental setup: (a) Polytec scanning head; (b) Polytec vibrometer controller 

Table 1. Comparison of MAC values  

Noise 
level 

0 5% 10% 

Mode 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

LLE 
(𝐾 = 20) 

0.9818 0.9957 0.8468 0.9638 0.4250 0.8121 0.9548 0.0842 0.7550 

MLLE 
(𝐾 = 20) 

0.9542 0.9907 0.6325 0.9856 0.9144 0.8319 0.9861 0.9664 0.8465 

ISO-LLE 
(𝐾 = 20) 

0.9818 0.9957 0.8470 0.9638 0.4250 0.8121 0.9548 0.0842 0.7550 

SLLE 
(𝜆 = 0.01) 

0.9543 0.9872 0.9402 0.9609 0.9883 0.9434 0.9991 0.9545 0.9849 

Table 2. Comparison of the first 3 order modal shapes 

Mode 1st order 2nd order 3rd order 

Ex.    

LLE 

   

MLLE 
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ISO-LLE 

   

SLLE 

   

Table 3. Comparison of the first 3 order modal frequencies 

Noise 
level 

0 5% 10% 

Mode 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

Ex. 23.13 61.88 130.00 23.13 61.88 130.00 23.13 61.88 130.00 

LLE 
(𝐾 = 20) 

22.96 61.55 129.0 22.96 61.55 129.0 22.96 61.55 129.0 

MLLE 
(𝐾 = 20) 

22.96 61.55 129.0 22.96 61.55 129.0 22.96 61.55 129.0 

ISO-LLE 
(𝐾 = 20) 

22.96 61.55 129.0 22.96 61.55 129.0 22.96 61.55 129.0 

SLLE 
(𝜆 = 0.01) 

23.45 61.55 129.9 23.45 61.55 129.9 23.45 61.55 129.9 

4. Conclusions 

A novel method based on sparse LLE algorithm in time domain is proposed for estimation of modal 

parameters and is applied in typical plate structure in this paper. Compared with the classical LLE 
algorithm and its various improved strategies, the proposed method can adaptively find the neighbors 

and weights simultaneously, which can reduce the effect of false identification caused by the uncertainty 
of the selection of nearest neighbors 𝐾. Moreover, the proposed method has higher identification 

accuracy and better robustness. But this method is only suitable for overdetermined blind identification 

or determined blind identification, where the number of observed signals are greater than or equal to 
active modes. It will be of great significance to develop operational modal parameters identification 

approaches under underdetermined blind conditions, where the number of observed signals are less 

than active modes in the future. 
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