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Abstract

Obtaining accurate heat flux predictions for high-speed flows remains challenging and typically requires
excessively fine meshes. The present work applies the high-order finite element-type Flux Reconstruc-
tion (FR) method and a Localized Laplacian Artificial Viscosity (LLAV) method to two high-speed bench-
mark test cases. More specifically, the Mach 3 viscous flow over a flat plate with linearly varying wall
temperature and the Mach 17.6 viscous flow over a cylinder with a constant wall temperature are con-
sidered. An accurate heat flux prediction for both test cases is obtained at different orders of accuracy
up to 10-th order using coarse meshes. For the flat plate case, the obtained heat flux is compared
with the analytical solution from the Chapman-Rubesin approach. For the cylinder case, the heat flux
is compared with results from the literature. For both cases a good agreement is found. Finally, the
influence of the shock capturing method and the characterizing parameters of the FR method, including
the correction polynomials, point distributions and interface flux schemes, on the predicted heat flux of
the cylinder case is investigated.
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Nomenclature
Latin

c – LLAV scaling factor
Cp – Pressure coefficient
cp – Heat capacity at constant pressure
d – Deviation
J – Jacobian
kFi – Flux vector in point k for variable i
h – Correction function
h̄ – Characteristic element length
lk – Lagrange polynomial related to point k
M – Mach number
N – Number of mesh elements
Ndim – Number of dimensions
Neq – Number of equations
Nf – Number of flux points
Ns – Number of solution points
P – Polynomial order
p – Pressure
S – Smoothness

St – Stanton number
kqi – Corrected gradient vector in point k for vari-

able i
q – Heat flux
T – Temperature
t – Time
ku – Conservative state vector in point k
V – Velocity
x – Coordinate vector
Greek
ε – Artificial viscosity
Θ – Mapping function
κ – Spectrum parameter of artificial viscosity
λ – Eigenvalue
ξ – Coordinate vector in standard domain
ρ – Density
Ω – Computational domain
Superscripts
ˆ – Variable in standard domain
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δ – Approximate polynomial
D – Discontinuous value
I – Interface value
Subscripts
∞ – Free stream value
0 – Reference value

AV – Artificial viscosity
C – Convection
D – Diffusion
t – Total value
w – Wall value

1. Introduction
In the design of the thermal protection system of hypersonic vehicles, assessing the heat flux expe-
rienced during the different flight phases is crucial. Traditionally, low-order Computational Fluid Dy-
namics (CFD) methods, such as second-order finite volume, are used for this purpose. However, these
methods typically introduce a large numerical dissipation and require extremely fine meshes to obtain
accurate heat flux predictions. Recently, compact Finite Element-type (FE) high-order methods have
drawn considerable attention due to an increased computational efficiency over their low-order coun-
terparts. High-order methods generally introduce less numerical dissipation and allow for the use of
coarser meshes while obtaining the same or better accuracy. The Flux Reconstruction (FR) formulation
in particular represents one of the most recent and promising family of schemes. However, one of
the main pacing item for these types of methods is their lack of adequate shock capturing techniques.
Consequently, only limited results with high-order FE-type methods have been obtained for super- or
hypersonic flows [1].

The present paper applies the FR approach with an artificial viscosity shock capturing method to the
supersonic viscous flow over a flat plate and the hypersonic viscous flow over a cylinder. It is demon-
strated that the FR method obtains an accurate heat flux prediction for both cases. The FR method is
presented in section 2. Section 3 describes the shock capturing method. The two cases are presented
in section 4.

2. Flux Reconstruction
The FR method is a high-order Finite Element-type (FE) method that was originally developed by Huynh
in [2]. The formulation of the FR approach proposed by Huynh is applicable to 1D advection prob-
lems and can be extended to quadrilateral and hexahedral (tensor) elements through tensor products
of the one-dimensional base and correction functions. In [3, 4], the FR scheme was extended to
advection-diffusion problems on both simplex and tensor elements. In this case, the flux also depends
on the gradient of the solution, and the reconstruction procedure is applied to both the solution and the
flux.

The FR solver used in the present work is implemented in the COOLFluiD1 platform and is described in
detail in [5, 6]. More information on the development of COOLFluiD as a whole can be found in [7, 8].
Since the present solver uses tensor elements, the FR procedure for tensor elements is outlined in this
section.

2.1. FR for Tensor Elements
Consider solving a system of Neq advection-diffusion conservation equations on an arbitrary domain Ω,
given by its i-th equation:

∂ui(x, t)
∂t

= −∇ · Fi (u,∇u) for i = {1, ... ,Neq} and x ∈ Ω. (1)

In this equation, t represents the time variable, x contains the space dimensional variables, in 3D being
x = (x, y, z), ui is the i-th conservative variable for which the system is solved, and Fi is the flux
vector related to the i-th conservative variable. The Navier-Stokes equations can be written as a system
of conservation equations, equivalent to Eq. 1. The FR method is classified as an FE-type method.
Hence, the spatial domain Ω is partitioned into a finite number N of non-overlapping, non-empty, open

1https://github.com/andrealani/COOLFluiD/wiki
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sub-domains Ω′
n. The closed domain corresponding to the union of the open sub-domain Ω′

n and its
boundary Γn is called an element and is denoted by Ωn = Ω′

n ∪ Γn such that:

N∪
n=1

Ωn = Ω with
N∩

n=1

Ωn = ∅. (2)

The exact solution vector u of the conservation law in Eq. 1 is approximated by a function uδ
n within

each element Ωn. This function uδ
n corresponds for each ui to a polynomial of degree P within Ωn and

is identically zero on Ω \ Ωn. These polynomials are allowed to be discontinuous across elements. uδ

is constructed through summation of the elemental solutions uδ
n. In the same manner, the exact flux

F is approximated by a polynomial of degree P + 1 within each sub-domain Ωn, denoted by Fδn. The
overall approximate flux Fδ in the entire domain Ω is given by the sum of the elemental approximate
fluxes such that:

uδ =

N∑
n=1

uδ
n and Fδ =

N∑
n=1

Fδn. (3)

Each element Ωn together with the approximate solution uδ
n and flux Fδn inside it, is transformed to a

standard reference element ΩS, which in 3D is given by: ΩS = {ξ = (ξ, η, ζ) | − 1 ≤ ξ, η, ζ ≤ 1}.
In this manner, the computations for all elements are done in the same reference domain ΩS. The
transformation between Ωn and ΩS is carried out by means of a mapping function Θn(ξ). The solution
uδ
n within each sub-domain Ωn can be obtained by solving the transformed conservation equation within
the reference element ΩS:

∂ûδ
i

∂t
= −∇ξ · F̂δi with ξ ∈ ΩS , (4)

with the transformed physical quantities given by:

ûδ
i = ûδ

i (ξ, t) = Jnu
δ
i (Θn(ξ), t) and F̂δi = F̂δi (ξ, t) = Fδi (Θn(ξ), t). (5)

In Eq. 5, Jn represents the Jacobian of the mapping Θn(ξ). From here on out, equations will only be
considered in the standard domain and will only operate on the approximate polynomials for solution
and flux. As such, hats on u and F and the superscript δ will be omitted in the rest of the present paper
to make the equations more readable.

The FR method for solving Eq. 4 within the reference element ΩS consists of seven subsequent steps.
In the first step, a specific form for the approximate solution ui is defined. To this end, a set of
Ns = (P + 1)Ndim distinct solution points are chosen where Ndim is the spatial dimensionality of the
problem to be solved. The solution points typically have a Gauss-Legendre distribution. At these solution
points the values of ui are assumed to be known. Consequently, the approximate solution ui is defined
as a degree P polynomial of the following form:

ui =

Ns∑
k=1

kui lk(ξ), (6)

where kui is the value of ui at the k-th solution point, and lk(ξ) is the base function polynomial associated
with the k-th solution point. For the FR method the base functions are Lagrange polynomials. It is
however not necessary to construct a multivariate Lagrange basis for tensor elements since a product
of one-dimensional Lagrange polynomials in each spatial direction can be taken as follows:

ui =

Ns∑
k=1

kui lk(ξ) =

Ns∑
k=1

kui l
ξ
k(ξ)l

η
k(η)l

ζ
k(ζ), (7)

where lξk(ξ) represents a 1D Lagrange polynomial in the ξ direction related to the k-th solution point.
More detailed information on this can be found in [2].
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The second step consists of determining a common interface solution uI
i at the boundaries of the stan-

dard element ΩS. On each face of the element, P +1 flux points are defined with the same distribution
as the solution points, where the flux points of two neighbouring elements coincide. In order to compute
the interface value at the f-th flux point fu

I
i , Eq. 6 is evaluated in the f-th solution point. fu

I
i can be

computed using an interface scheme, such as the second approach of Bassi and Rebay (BR2) [9]. Fig.
1 illustrates the process of computing the common interface values in 1D.

Fig 1. Computation of the common interface solutions; orange circles represent solution points and
blue squares represent flux points

The third step of the FR method consists of calculating a corrected solution gradient kqi in each solu-
tion point k for each variable i. The previously defined interface solution values are used to obtain a
continuous solution polynomial. To this end correction functions hf for each flux point f are defined
which have the following property for all flux points f and their opposite flux point g:

hf (ξf ) = 1 and hf (ξg) = 0. (8)

Due to the tensor basis previously used for the solution points, these correction functions are one-
dimensional and are only defined in the direction related to flux point f . Flux point g is on the same
spatial direction as f but on the opposite side of the element as shown in Fig. 2. Furthermore from
this figure it can be seen that to each solution point k there will be Ndim 1D Lagrange polynomials
associated, each defined on a different spatial direction, shown by two dashed lines in Fig. 2. The form
of the correction polynomials is defined by the VCJH scheme, which can be found in [10].

Fig 2. Illustration of tensor basis in 2D tensor element

The corrected solution gradient kqi is then computed via the following expression:

kqi = ∇ui +

Nf∑
f=1

dhf

dξf
(ξk)

(
fu

I
i − fui

)
nf , (9)
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where Nf is the total number of flux points in an element, ξf the direction related to flux point f and
nf the normal vector in flux point f . Using Eq. 7 this can be written as:

kq
d
i =

Ns∑
s=1

sui
dlds
dξ

(ξk) +

Nf∑
f=1

dhf

dξf
(ξk)

(
fu

I
i − fui

)
nd
f , (10)

where kq
d
i is the i-variable gradient in solution point k in the d-direction, where d is either ξ, η or ζ, and

nd
f d-component of the normal in flux point f .

The fourth step consists of calculating the approximate discontinuous flux polynomial FDi (ξ). To this
end, the flux is computed at each solution point ξk, denoted by kFi. In general, the flux depends
on the solution and the solution gradient. Consequently, the discontinuous flux is evaluated using the
approximate solution kui, and the corrected solution gradient kqi. The approximate discontinuous flux
FDi (ξ) is then constructed as a polynomial of degree P in the same manner as ui in Eq. 7:

FDi (ξ) =

Ns∑
k=1

kFi(kui, kqi) lk(ξ) =

Ns∑
k=1

kFi(kui, kqi) l
ξ
k(ξ)l

η
k(η)l

ζ
k(ζ). (11)

The fifth step of the FR framework involves computing the common interface fluxes FIi at the flux points.
In order to compute these interface fluxes, it is necessary to first obtain in each flux point f the values
of fui and fqi using Eq. 7 and 10. For the convective interface flux, an upwind biased approximate
Riemann solver, like the Roe scheme [11], can be used. The diffusive interface flux is often calculated
following the BR2 scheme [9].

The flux must be continuous across element boundaries in order to obtain a conservative scheme.
Therefore, the sixth stage of the FR framework consists of adding a correction flux function FCi (ξ) to
the approximate discontinuous flux FDi (ξ) resulting in the continuous flux Fi(ξ). The correction flux
FCi is a polynomial of degree P + 1 defined in such a manner that the continuous flux Fi equals the
common interface flux FIi in the flux points, while approximating the discontinuous flux FDi within the
standard element. In order to satisfy the aforementioned requirements, FCi is constructed by means of
the degree P + 1 correction functions hf (ξ) that were previously used to obtain the corrected gradient
kqi. Consequently, the correction flux function FCi (ξ) takes the following form:

FCi (ξ) =
Nf∑
f=1

hf (ξ)
(
fFIi − fFDi

)
, (12)

where fFDi = FDi (ξf ). A schematic of the flux correction procedure within a 1D element with flux points
f and g is given in Fig. 3.

Fig 3. Correction procedure of the discontinuous flux such that the values of the total flux at the
boundaries are equal to the interface value
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The final step of the FR method consists of computing the divergence of the total flux Fi(ξ) at each
solution point k. To this end the divergence of Eq. 11 and 12 is taken:

∇ · kFi =
Ns∑
s=1

Ndim∑
d=1

sF
d
i

dlds
dξd

(ξdk) +

Nf∑
f=1

dhf

dξf
(ξk)

(
fFIi − fFDi

)
· nf , (13)

where ξd is the d-th spatial direction and sF
d
i the ξd-component of sFi.

Finally, a time marching strategy such as the backward Euler method is applied to advance the approx-
imate solution ui in time using the following expression:

dkui

dt
= −∇ · kFi. (14)

3. Localized Laplacian Artificial Viscosity
Robust shock capturing is the main pacing item for high-order finite element-type CFD methods. In the
vicinity of discontinuities within the flow field, spurious oscillations appear due to the Gibbs phenomenon.
This effect is more severe for higher orders and for stronger shocks. The oscillations near the shock
generally cause numerical instabilities and negative pressures or densities. The present paper uses a
modified Localized Laplacian Artificial Viscosity (LLAV) scheme in order to alleviate oscillations caused by
the Gibbs phenomenon as well as the harsh transient effects of hypersonics, as presented in [5].
The localized artificial viscosity method adds an artificial diffusive flux that depends on the local properties
of the flow field in order to spread out the shock over one or more elements. In this way oscillations
due to the Gibbs phenomenon around shocks are attenuated. Within the LLAV framework, the artificial
viscosity is of a Laplacian type, as proposed in [12, 13]. The local artificial viscosity is only activated in
areas of the flow field where discontinuities are present. To this end, a smoothness detector is used, of
which several are proposed in [13].
LLAV shows better convergence characteristics compared to traditional limiters developed for FR, such
as Multi-Dimensional Limiting Process (MLP) [14]. Furthermore, LLAV is readily adaptable to implicit
time-marching schemes. However, LLAV cannot guarantee positivity of the solution for hypersonic test
cases and requires fine-tuning of the maximum amount of artificial viscosity added, to work properly.
Furthermore, the positivity preservation scheme presented in [5] is used to guarantee positivity. Below
a concise overview of the used LLAV method is given.
Within the LLAV framework, an extra flux is added to the system of equations, such that:

dkui

dt
= −∇ · kFi,C +∇ · kFi,D +∇ · kFi,AV , (15)

where kFi,C is the convective flux, kFi,D the diffusive flux and kFi,AV the flux due to the artificial
viscosity. kFi,AV is constructed as follows:

kFi,AV = ε∇kui, (16)

where ε is the artificial viscosity. Within the FR framework, this means that the space discretisation
procedure is also applied to a third flux. The gradients ∇kui are approximated using the corrected
solution gradients kqi as computed in Eq. 10. As such, the FR procedure, as described in section 2.1,
is applied to:

kFi,AV = εkqi. (17)

The value of the artificial viscosity ε is computed in such a way that it is only active in discontinuous
regions:

ε =


0 if S < S0 − κ,

ε0
2

(
1 + sin π(S − S0)

2κ

)
if S0 − κ ≤ S ≤ S0 + κ,

ε0 if S > S0 + κ,

(18)
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where S is the smoothness in the current element, S0 the reference smoothness, κ a parameter to
control the working spectrum of the artificial viscosity and ε0 the maximum artificial viscosity.

The smoothness for a P -th polynomial order FR method can be computed as follows, using the smooth-
ness detector found in [12]:

S = log10
⟨um − uP−1

m , um − uP−1
m ⟩

⟨um, um⟩
, (19)

where um is the state variable that is monitored in order to detect discontinuities. For the Navier-
Stokes equations, typically the density ρ or pressure p is used. When using the density ρ however, the
smoothness detector can potentially detect the boundary layer as a shock since ρ can exhibit a strong
gradient in the boundary layer. As such, unless mentioned otherwise, the pressure is used in the present
work. uP−1

m represents the monitored state variable projected on a (P − 1)-th order polynomial. The
operator ⟨· , ·⟩ is the element-wise scalar product over the solution points. The reference smoothness is
set equal to S0 = −5 log10 P −0.5, differing from the reference smoothness in [5]. In previous work, S0

was set to −3 log10 P . It was found however that progressively reducing S0 at higher orders significantly
increases robustness, hence the factor of 3 is changed to 5. Furthermore, at P1 the theoretical maximum
smoothness S = 0, which would be equal to the reference smoothness if S0 = −3 log10 P . As such only
half the smooth interval going from 0 to ε0 would be utilized. As such, S0 is reduced by 0.5 in order to
utilize the full smooth interval at low orders, hence obtaining:

S0 = −5 log10 P − 0.5. (20)

The maximum artificial viscosity ε0 is set to be:

ε0 = f(P )h̄|λ|max, (21)

where h̄ is the characteristic length of the current element and |λ|max the maximum eigenvalue of the
inviscid part of the system of equations. In order to take into account the order P of the FR method,
following the approach of [13], f(P ) is set to:

f(P ) = c(2−∆ξmax(P )), (22)

where ∆ξmax(P ) is the sub-cell resolution, i.e. the largest distance between two solution points within
the reference domain and c a constant. In order to avoid the need for fine-tuning the constant c, its
value is calibrated following the procedure in [5].

4. Results
Two cases are considered: the supersonic viscous flow over a flat plate an the hypersonic viscous flow
over a cylinder. The present section presents the results obtained for both cases, with an emphasis and
the predicted heat flux.
4.1. Supersonic Viscous Flow over a Flat Plate
A supersonic viscous flow of air over a flat plate of 1m length is considered. The fluid is considered as
an ideal gas and has the free stream conditions presented in Table 1.

Table 1. Free stream values for the supersonic flat plate case

M∞ p∞ [Pa] T∞ [K]

3 17106 500

The flat plate has a linearly varying temperature of the following form:

Tw = T∞

(
0.4 + 2.85

x

L

)
, (23)
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where L is the length of the flat plate, in this case L = 1m.

An analytical solution for this case is proposed by Chapman and Rubesin in [15]. The Chapman-Rubesin
(CR) method is grounded in the laminar boundary layer theory and as such solves the flat plate boundary
layer equations. The CR method assumes ideal gas behaviour and a constant Prandtl number and cp.
Furthermore, this approach is only valid when:

∂Tw

∂x
≤ O

(
Tw − T∞

δ

)
, (24)

where δ is a measure for the boundary layer thickness.

In [16] an assessment was made of the accuracy of the CR method. The CR solution is compared with
the analytical shooting method presented by Anderson in [17] for a flat plate with an isothermal wall.
A deviation of the heat flux predicted by CR with respect to the one predicted by the shooting method
ranging from 0.2% to 10.8% is found for Tw/T∞ ranging from 0.4 to 3.25. Consequently, the expected
accuracy of the CR method is around 10%. To obtain the analytical CR solution of the present case, the
code developed in [16] is used.

The used mesh is presented in Fig. 4. The flat plate is considered as a no-slip wall. On the horizontal
boundary upstream of the flat plate a symmetry boundary condition is imposed. The left vertical and
top horizontal boundaries are Dirichlet boundary conditions imposing the free stream values. On the
right vertical boundary a supersonic outlet condition is imposed. In this way, due to the height of the
domain, the shock induced by the boundary layer only touches the outlet boundary condition. The
mesh contains 1792 quadrilateral element. 50 elements on the flat plate, 6 elements on the symmetry
condition and 32 elements normal to the flat plate.

Fig 4. Mesh with 1792 quadrilateral elements used for the supersonic flat plate case

The FR method is used with a cSD VCJH scheme [10] for the correction functions. The distribution of
both the solution and flux points is the Gauss-Legendre distribution. For the convective interface fluxes,
the AUSM+ scheme is used, as proposed in [18, 19]. For the diffusive and artificial interface fluxes, the
Local Approach scheme is used [20, 23]. For the LLAV scheme, κ is set to 0.5.

Fig. 5a presents the Stanton number for first up to fourth order of accuracy, i.e. polynomial orders P0
up to P3, comparing with the Stanton number obtained from the CR method. The Stanton number is
defined as follows:

St =
qw

cpρ∞V∞(Tt,∞ − Tw)
, (25)

where qw is the wall heat flux and Tt,∞ the total free stream temperature. Note that this definition is
slightly different from the one used in [15, 16, 17] in order to be consistent with the Stanton number
used in the case presented in section 4.2.
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It is clear that at polynomial order P2 and P3 the FR method approaches the CR method closely, although
not coinciding exactly and exhibiting some oscillation close to discontinuity of the leading edge. One
remarkable feature of the Stanton number is the asymptote at approximately x = 0.84m. This is not
due to an infinite heat flux, it is however due to the denominator of the Stanton number becoming zero
when the wall temperature equals the total free stream temperature. This can easily be verified by
considering the heat flux instead of the Stanton number, presented in Fig. 5b. For the heat flux there is
no singularity and the FR solution once again approaches the CR solution. In order to estimate whether

(a) Stanton number (b) Heat flux

Fig 5. Supersonic flat plate P0 to P3 solutions

the deviation of the FR method from CR is of the same order of magnitude as the uncertainty of CR of
10%, the deviation of the FR solution with respect to the CR solution is shown in Fig. 6. The deviation
d is defined as:

d =
StFR

StCR
− 1. (26)

The asymptote at approximately x = 0.45m in the deviation plot appears where the Stanton number
reaches zero. The asymptote in the Stanton number plot disappears in the deviation plot since the
factor that adimensionalises the FR and CR Stanton number (the denominator in equation 25) is the
same.

In order to get an averaged estimate of the deviation, the Root Mean Square (RMS) of the deviation
is computed as follows starting from x = 0.1m to avoid the influence of the leading edge discontinu-
ity:

RMSd =

√
1

L

∫ L

0.1

d2dx. (27)

For P3 the two flux points closest to the asymptote are not taken into account in order to avoid the
influence of the large deviation where St = 0, which does not indicate a large error. The values
of RMSd for P0 up to P3 are given in Table 2. As expected, the RMS deviation decreases with the
polynomial order. Furthermore, the RMS deviation for P3 is close to the expected accuracy of 10% of
the CR method. An RMS deviation of 0.1458 was obtained with DLR tau in [16], using the same definition
of RMSd as in Eq. 27 and not taking into account the deviation around the asymptote.
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(a) P0 to P3 (b) Zoom on P3

Fig 6. Stanton number deviation

Table 2. RMS deviation of the Stanton number for different orders

Order P0 P1 P2 P3
RMSd 2.327 1.252 0.2893 0.1105

4.2. Hypersonic Viscous Flow over a Cylinder
The second considered test case consists of a hypersonic viscous flow over a cylinder, which is widely
used in the literature and was first proposed by Gnoffo in [21]. The considered geometry consists of a
cylinder with radius 1m. The free stream values imposed are presented in Table 3.

Table 3. Free stream values for the hypersonic cylinder case

M∞ p∞ [Pa] T∞ [K]

17.605 57.602 200

The used mesh is presented in Fig. 7. The mesh consists of curved quadrilateral elements of second
order and contains 297 elements: 11 in the circumferential direction and 27 in the direction normal to
the cylinder. The inlet boundary is imposed as a Dirichlet boundary condition that sets the states to
the free stream values. For the outlet, a supersonic outlet boundary condition is used. The cylinder is
represented by an iso-thermal no-slip wall at a temperature Tw of 500K.

Fig 7. Mesh with 297 curved quadrilateral elements used for the hypersonic cylinder case

The FR method is used with a cSD VCJH scheme [10] for the correction functions. The distribution of
both the solution and flux points is the Gauss-Legendre distribution. For the convective interface fluxes,
the AUSM+ scheme is used, as proposed in [18, 19]. For the diffusive and artificial interface fluxes, the
Local Approach scheme is used [20, 23]. For the LLAV scheme, κ is set to 0.5.

HiSST-2022-85
R. Vandenhoeck, A. Lani and J. Steelant

Page | 10
Copyright © 2022 by the author(s)



HiSST: International Conference on High-Speed Vehicle Science & Technology

The pressure coefficient fields for a second-order and fourth-order of accuracy FR method are presented
in respectively Fig. 8 and 9. Here the pressure coefficient is computed as follows:

Cp =
p− p∞
0.5ρ∞V 2

∞
. (28)

Fig 8. Pressure coefficient field for P1

Fig 9. Pressure coefficient field for P3

Fig. 10 and 11 show the artificial viscosity for the two cases. It is clear that the LLAV method is only
active in the shock area. Fig. 12 shows the Stanton number as a function of θ of the first- to seventh-
order of accuracy solutions, i.e. P0 to P6, compared to the one found in [1]. The variable θ is the angle
along the cylinder, reaching θ = 0° in the stagnation point and θ = ±90° in the two end-points of the
considered half-cylinder. For P0 to P3 the heat flux is over-estimated, while for higher orders it coincides
with the reference heat flux. A stagnation Stanton number of approximately 0.0082 is found, coinciding
with the value found in [1, 22].

Fig 10. Artificial viscosity field for P1

The present test case is also executed on a coarser mesh, in order to obtain a tenth-order of accuracy
solution (P9). The mesh is presented in Fig. 13 and contains 77 curved quadrilateral elements. The
pressure coefficient field for the tenth-order of accuracy solution is presented in Fig. 14. The pressure
coefficient on the stagnation line for the present case and the P1 and P3 solutions on the 297 element
mesh as shown previously in figures 8 and 9, is shown in figure 15. Cp is plotted as a function of the
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Fig 11. Artificial viscosity field for P3

(a) Full simulated cylinder (b) Zoom around stagnation point

Fig 12. Stanton number for the hypersonic cylinder case

distance d to the cylinder normalized by the cylinder diameter D. As such, d/D = 0 corresponds to the
stagnation point on the cylinder, while the inlet is positioned at d/D = 0.5. It is clear that for the P9
solution, the shock is resolved smoothly and no significant oscillations are present around the shock.
For P3, there generally are no oscillations present, however, a slight discontinuity can still be seen on
the downstream side of the shock, around d/D = 0.14. For P1 however, some over- and undershoots
are observed due to the inaccuracy of P1 on the considered very coarse mesh.

Fig 13. Coarse mesh with 77 curved quadrilateral elements for the hypersonic cylinder case

Fig. 17 shows the Stanton number for 3 cases with approximately the same amount of Degrees of
Freedom (DoF): the present P9 case with 77 elements (7700 DoF), the P4 case presented previously
with 297 elements (7425 DoF) and a P1 case on a mesh with 1891 elements (7564 DoF), of which Fig.
16 presents the mesh. All meshes have the same smallest element height of 1e-5m. Despite having
approximately the same amount of degrees of freedom, it is clear that P4 and P9 significantly outperform
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Fig 14. Pressure coefficient field for P9

Fig 15. Pressure coefficient on the stagnation line as a function of the normalized distance to the
cylinder for the P1 and P3 cases on the 297 element mesh and the P9 case on the 77 element mesh

P1 and have a much better agreement with the reference Stanton number.

Fig 16. Mesh with 1891 curved quadrilateral elements for the hypersonic cylinder case

Finally, in order to assess the influence of the different FR parameters as well as the shock capturing
scheme on the heat flux prediction, a P1 simulation was done on a finer mesh for different settings of
the FR method. The mesh used contains 3150 elements and is shown in Fig. 18. The case was run for
different settings of the LLAV shock capturing scheme. Fig. 19a presents the Stanton number for differ-
ent settings of κ, c and S0. The final line in the legend represents a simulation where the smoothness
detector S was computed based on the density ρ instead of the pressure p. It is clear that the predicted
Stanton number does not greatly depend on the settings of the LLAV scheme. Additionally, even using
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Fig 17. Stanton number for cases with approximately the same amount of DoF: P1, P4 and P9

density for the smoothness detector, a good heat flux is found, despite strong density gradients in the
boundary layer, which can mistakenly be seen as a shock by the smoothness detector.

Fig. 19b presents the Stanton number prediction for the Gauss-Legendre and Gauss-Lobatto solution
and flux point distributions and for an equidistant distribution. The influence on the Stanton number
is again small, only the Gauss-Lobatto points under-perform in the stagnation point. This is consistent
with the general lack of accuracy found when using Gauss-Lobatto points for FR [5].

Fig. 19c shows the Stanton number for different interface flux schemes. The convective schemes
considered are: AUSM+, AUSM+Up [18, 19] and the Roe scheme [11]. The diffusive interface flux
schemes considered are: Local Approach (LA) [20, 23] and the 2nd approach of Bassi-Rebay (BR2) [9].
Once again it is clear that the influence on the Stanton number is small.

Finally, Fig. 19d presents the Stanton number for different VCJH correction functions. The correction
function for which FR reduces to Spectral Difference (SD), for which FR reduces to Discontinuous Galerkin
(DG) [10] and the g2 correction function proposed by Huynh in [2] are considered. Also in this case,
the predicted Stanton does not vary much with different forms of correction functions.

Fig 18. Mesh with 3150 curved quadrilateral elements used for the hypersonic cylinder test case
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(a) κ, c and S0 (b) Solution and flux point distributions

(c) Convective/diffusive interface flux schemes (d) VCJH correction functions

Fig 19. Stanton number for different parameters

5. Conclusion
The developed FR and LLAV methods are successfully applied to two viscous high-speed benchmark
test cases and are shown to obtain accurate heat flux predictions. For both cases relatively coarse
meshes are used, where higher orders of accuracy, up to 10-th order, coincide closely with considered
references. The predicted Stanton number is compared to both analytical results as well as numerical
results from the literature. It is shown that for cases with a similar amount of DoFs, higher orders
obtain more accurate heat flux predictions. Furthermore, the influence on the predicted heat flux of the
parameters of the shock capturing method, as well as the characteristic parameters of the FR method,
including the correction polynomials, the point distributions and the convective and diffusive interface
flux schemes, was investigated. Only a minor influence was found for all investigated parameters.
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