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Abstract

Design of scramjet intakes requires sophisticated methodologies to achieve desirable compression re-
ducing total pressure loss and drag simultaneously, and multi-objective design optimization (MDO) using
evolutionary algorithms (EA) is one of the most promising approaches. In addition, the dataset obtained
from computational fluid dynamics (CFD) simulations in the MDO process can serve expected as a rich
mine of physics-based information. However, the substantial computational cost of a large number of
CFD evaluations represents an obstacle to high-fidelity design search. The present study proposes an
evolutionary algorithm which employs a multi-dimensional flow prediction model via deep learning for
objective/constraint function evaluations to replace CFD simulation by predicting flowfields inside scram-
jet intakes. The proposed EA-based MDO framework is applied to an optimization study of axisymmetric
3-ramp intakes and the performance and utility are discussed. This EA approach using multi-dimensional
predictive modeling is applicable for various optimization problems which require reduction of the com-
putational cost of function evaluations.

Keywords: Hypersonic airbreathing propulsion, Scramjet intake, Multi-objective design optimization,
Evolutionary algorithm, Deep learning

1. Introduction
Scramjet (supersonic combustion ramjet) engines are an air-breathing technology that operates under
hypersonic conditions and can be used for high-speed point-to-point (P2P) transportation as well as
atmospheric ascent flights in space transportation. Scramjet engines are expected to be one of the key
technologies to realize low-cost and flexible space transportation due to efficient engine operation and
maneuvability. Scramjet research and technology developments have been continued since the 1940s
and advanced to the level of flight tests [1, 2]. Among the main components of a scramjet engine (e.g.,
an air intake, fuel injectors, a combustor, and a nozzle), the air intake, which lies most upstream in
the scramjet flow path, plays a key role in achieving successful operation of the scramjet engines by
determining the characteristics of internal flowfields. The performance of scramjet intakes is examined
with respect to various aspects such as the capability of compression, efficiency, and robustness, and
multi-objective design optimization (MDO) is recognized as an effective design technique due to the
capability of exploring the design space for optimum solutions by taking multiple design criteria into
account simultaneously.

Evolutionary algorithms (EAs) are one of the most effective approaches for multi-objective design op-
timization due to their ability to find a wide variety of optimal solutions without user-defined fixed-ups
for multi-objective optimization problems [3]. The algorithms enable identification of optimum solutions
while maintaining the diversity of solutions, and thus the resultant set of optimum solutions serves as
an archive of various superior designs. Further, the numerous solution evaluations accordingly yield a
dataset that may offer useful insights via data mining. Preceding studies include the design optimization
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and data mining for airfoil shapes [4], wings of a flyback booster [5], and scramjet intakes [6]. While
these studies have demonstrated that EAs can produce not only excellent design but also important
knowledge for the design strategies, considerable computational cost for function evaluations inherently
hampers EAs from revealing their potential. Reduction of computational costs for function evaluations
has been a subject of interest and surrogate models are often employed to replace the true function
evaluations which require large computational costs [7]. A surrogate model typically predicts an objec-
tive/constraint function value for a given set of decision variable values as the inputs. Since the relation
between an objective/constraint function and decision variables is represented by a function, the com-
putational cost can be reduced significantly compared to that of true function evaluations which involve
computationally expensive simulations. However, the reduction of computational costs may sacrifice the
fidelity of design search and affect an important role of EAs in providing key insights into the design
problem since surrogate models do not represent physics-based behavior. Such drawback of surrogate
modeling have motivated the development of predictive modeling that can provide the same amount of
multi-dimensional physical information as the numerical simulation which is employed in true function
evaluations.

The development of multi-dimensional predictive modeling which allows for prediction of flowfields
(hence multi-dimensional output) rather than scalar values has been accelerated by recent advances
in machine learning and computer technologies. Many researchers conducted studies on prediction
of various flowfields by using various machine learning techniques in recent years [8]. The prediction
methodologies can be classified into reduced-order-modeling-based (ROM-based) approaches and direct
predictions. The former couples ROM for feature extraction and regression techniques for prediction.
Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are often employed
for the order reduction [9, 10]. The ROM-based approaches have advantages in the computational cost
but the nature of order reduction inherently affects the prediction accuracy. On the other hand, direct
prediction does not involve order reduction and thus tends to enable more accurate prediction than those
using ROM despite tendency of larger computational cost for modeling. The direct prediction models
via deep learning have been reported for airfoils and scramjet intakes in previous studies [11, 12].
While ROM-based approaches typically predict just one flow property, deep-learning models can predict
multiple properties by one model. Deep-learning direct prediction modeling is employed in the present
study based on the preceding study [12] since the performance of scramjet intakes is assessed by using
multiple flow properties.

The present study aims to develop a low-cost and high-fidelity design methodology for scramjet in-
takes which provides not only a set of optimal designs but also physical insights into the design. An
evolutionary algorithm which employs multi-dimensional predictive modeling for function evaluation
(multi-dimensional prediction assisted evolutionary algorithms, MDPAEA) is proposed. Deep learning
techniques realize multi-dimensional predictictive modeling to predict flowfields inside scramjet intakes
instead of scalar values. The MDPAEA framework is validated by using 3 test problems and an opti-
mization study of axisymmetric 3-ramp intake design is conducted by using MDPAEA. The ability and
performance of MDPAEA are examined by scrutinizing the optimization results in terms of computational
efficiency, solution search, and model accuracy.

2. Methodologies
2.1. Configuration
The present study considers scramjet intakes for ascending flight in space transportation. The ascent
trajectory assumes a constant dynamic pressure at 49.7 kPa in consideration of the limitation of engine
structure and supersonic combustion. It assumes typical flow conditions where the scramjet starts the
operation, i.e., Mach number M1=7.7, static pressure p1=1197 Pa, and static temperature T1=226.5
K at an altitude of 30 km.

An axisymmetric 3-ramp intake configuration is employed in the present study due to its high efficiency
and simple structure[13]. The configuration and parametrization are shown schematically in Fig. 1. ✓1
is the inclination angle of the 1st ramp and �✓2 and �✓3 are the increments of wall inclination angle
at the 2nd and 3rd ramps. The length of the ith ramp is represented by li and the total intake length
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is represented by l. The radii at the intake entrance and exit are ri and rc, respectively. The intake
entrance radius is fixed at 0.075 m to maintain a constant mass flow rate. Among these 7 parameters
except for the intake entrance radius ri, the 6 parameters except for l1 are used to determine intake
geometries, whereas the 1st ramp length l1 can be calculated by using the other parameters.
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Fig 1. Parameterization of axisymmetric 3-ramp intake

2.2. Design optimization
The fundamental performance criterion of scramjet intakes is the capability of compression, which is
assessed based on the compression (static pressure) ratio and/or mean static temperature at the intake
exit. Therefore, mean exit temperature T̄2 is employed as a constraint function to impose a minimum
requirement for compression. In the present study, mean exit temperature is required to be larger than
850 K, i.e., T̄2 � 850 K. High-performance intakes are characterized by high compression efficiency
hence low total pressure loss and low drag generation. Compression efficiency loss 1� ⌘B and drag are
employed as the objective functions to be minimized. The present optimization problem can thus be
described as below:

Miminize: 1� ⌘B
Drag [N]

Subject to: T̄2 > 850 [K]
✏convergence > 0

where ✏convergence represents the convergence of CFD simulation (✏convergence=1 for converged solutions
and ✏convergence=-1 for other solutions). Compression efficiency is calculated as follows:
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where CR is the contraction ratio, T̄0 is total temperature, �Q is the total heat transfer across the
intake wall, cp is specific heat at a constant pressure, � is specific heat ratio, and ṁ is the mass flow
rate. The top bar denotes stream-thrust averaged flow properties (e.g., T̄ is stream-thrust averaged
static temperature). Drag can be calculated as below:

Drag = Fin � ṁ
2
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r
2
⇣
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where Fin is the streamwise force acting on the intake entrance, h0 is total enthalpy, and R is the gas
constant of air. These expressions are derived by Fujio and Ogawa [14] for compression efficiency
(Eq. (1)) and Ogawa and Boyce [15] for drag (Eq. (2)).

The solutions are defined by 6 decision variables, which are the 6 design parameters introduced in
Sec. 2.1. The ranges of the decision variables are summarized in Table 1.
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Table 1. Upper and lower limits of design variables

Design variable Unit Lower limit Upper limit
✓1 deg 3.5 6.5
�✓2 deg 2.5 5.5
�✓3 deg 0.5 4.0
l2 m 0.03 0.07
l3 m 0.01 0.05
rc m 0.02 0.04

2.3. multi-dimensional prediction assisted evolutionary algorithm
A multi-dimensional prediction assisted evolutionary algorithm (MDPAEA) is developed for the multi-
objective design optimization (MDO) problems. The optimization chain is displayed schematically in
Fig. 2. The algorithm employs deep learning prediction for objective/constraint function evaluations.
A predictive model is prepared in advance of the optimization loop and a training dataset is used to
select initial population of the evolutionary algorithm. The prediction from the model is employed if the
relative prediction error for the objective/constraint functions is less than 5 %. The model is improved via
transfer learning every 10 generations. Detailed information on the modeling and prediction approached
is provided in Sec. 2.4.

Dataset collection
(simulation-based)

Evolutionary process

Regeneration Function evaluation
(prediction-based) Pseudo-ranking Verification

(simulation-based)

Model
retraining

Evolutionary
process

Additional 
model training

Final
generation

Multi-dimensional
predictive modeling

Post analysis

yes

yes

no

no

Evolutionary algorithm

Predictive modeling

Fig 2. Optimization chain of multi-dimensional prediction assisted evolutionary algorithm

The evolutionary process is based on the non-dominated sorting evolutionary algorithm NSGA-II pro-
posed by Deb et al. [16]. The process consists of 4 steps, i.e., objective/constraint function evaluation,
ranking, selection, and regeneration. All individuals in the ith generation are evaluated by using model
prediction at first, and then are ranked in conjunction with the individuals in the (i� 1)th generation
based on objective/constraint functions that are calculated using the model prediction (“pseudo-ranking”
in Fig. 2). Among the individuals, the first-ranked individuals, namely non-dominated individuals at the
generation are verified via true function evaluation (CFD in the present study). The data of true func-
tion evaluations are stored in an archive which is used for model updates. After the verification of the
provisional non-dominated individuals, ranking is performed again to determine the actual ranks of the
individuals. Then, the selection is conducted based on dominance and crowding distance. The lowest
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rank is assigned to infeasible individuals, which are sorted based on constraint violations. Tournaments
are then conducted among surviving individuals to select parent individuals for regeneration. In the
regeneration process, crossover and mutation are conducted via simulated binary crossover (SBX) and
polynomial mutation with distribution indices for crossover and mutation of 10 and 20, respectively.
These evolutionary processes are iterated until the final generation.

2.4. Multi-dimensional predictive modeling via deep learning
2.4.1. Prediction & training
Multilayer perceptron (MLP) is employed to predict flowfields inside scramjet intakes based on the 6
design parameters defined in Table 1. The model is generated using an open-source Python library,
Tensorflow [17]. The model predicts static pressure, static temperature, and axial and radial velocity
components at a given location inside the intake. Thus, the model employs 8 parameters (6 design
variables and 2 coordinate variables (x, r)) as the inputs and has 4 output parameters as seen in Fig. 3.
The MLP model is constituted by an input layer, 7 fully-connected hidden layers with 700 neurons for
each layer, and an output layer. The activation function is ReLU (rectified linear unit) function in the
present study. Dropout is introduced to suppress overfitting with a dropout rate of 0.05.
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Fig 3. Schematic of flow prediction model using multilayer perceptron

The model is trained with 500 geometries for training and 50 geometries for validation, which are
sampled in the design space (Table 1) via Latin hypercube sampling (LHS) [18]. A test dataset with
100 geometries is also generated via LHS. The training is performed by a stochastic gradient-based
optimization method Adam [19] with the loss function L:

L =
1

4N

NX

m=1

4X

n=1

�
y⇤n,m � ỹ⇤n,m

�
+ �wTw (3)

where N is the number of data point. y and ỹ are actual and predicted target variables, respectively, and
y1, y2, y3, and y4 represent static pressure, static temperature, and axial and radial velocity components,
respectively. The superscript ⇤ denotes a variable which is standardized. The 2nd term of the loss function
is the regularization term. � is the coefficient and w is the vector composed by weights. The detailed
setting of training is summarized in Table 2.

Table 2. Detailed setting of MLP training

Batch size 1024
Number of epoch 250
Learning rate 0.0001

Coefficient of regularization 10�5

2.4.2. Accuracy
Model accuracy has been investigated for 100 test geometries in terms of the flowfields and perfor-
mance parameters. The prediction accuracy is assessed by using root-mean-squared error RMSE and
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coefficient of determination R2 for both flowfields and performance. The RMSE and R2 are calculated
as follows:

RMSEy =

vuut 1

N

NX

i=1

(yi � ỹi)
2 (4)

R2
y = 1�

PN
i=1 (yi � ỹi)

2

PN
i=1 (yi � ȳ)2

(5)

The accuracy of flow prediction is summarized in Table 3.

Table 3. Accuracy of flow prediction

p⇤ T ⇤ u⇤ v⇤

RMSE 0.0756 0.1664 0.0969 0.0921
R2 0.9944 0.9724 0.9906 0.9916

The prediction accuracy of each flowfield is evaluated by absolute and relative errors, Eabs and Erel,
respectively, as well. The prediction error distributions are visualized for the geometry with the medium
total RMSE by comparing with the actual (CFD) data as well as in the form of absolute and relative errors
in Fig. 4. It can be seen that the predicted flowfield shows reasonable agreement with the actual data
for the entire flowfield, apart from minor increases in prediction errors around shock waves, while the
error is marginal.

(a) Comparison (b) Absolute error (c) Relative error

Fig 4. Comparison of static temperature distributions between actual and predicted flowfields and
prediction error distributions

(a) Mean exit temperature (b) Compression efficiency (c) Drag

Fig 5. Comparison of performance parameters calculated from predicted flowfields and those from
actual flowfields for 100 test data

Performance parameters calculated based on predicted flowfields are compared with those calculated
from actual flowfields in Fig. 5, along with the coefficients of determination. The blue dots near the
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diagonal black line indicate high prediction accuracy. The results signify that the flow prediction model
is accurate enough to evaluate intake performance.

The capability of the model for supersonic/hypersonic flow prediction has been demonstrated in the
previous study conducted by the authors, and detailed information on the characteristics of the model
can be found in Reference [12].

2.5. Computational fluid dynamics
Computational fluid dynamics (CFD) simulations are performed to generate a dataset and to verify
prediction results in the present study. A commercial density-based solver ANSYS Fluent 2021 R1 is
employed to obtain steady-state flowfields inside scramjet intakes by solving Reynolds-averaged Navier-
Stokes (RANS) equations with shear-stress transport (SST) k � ! turbulence model [20, 21]. The flux
is discretized by using AUSM+ (advection upstream splitting method plus) with second-order spatial
accuracy and the Green-Gauss cell-based method is used for spatial discretization in the calculations
of gradients [22]. The full multigrid acceleration technique and the differentiable limiter are employed
for faster and robust convergence. A calorically and ideal gas assumption is employed for the air with
a constant specific heat cp of 1006.43 J/(kg·K) and the gas constant of 287 J/(kg·K). The viscosity is
calculated by using Sutherland’s law.

The internal flowfields of scramjet intakes are represented by two-dimensional structured meshes which
are generated via an open-source mesh generator Gmsh [23]. The computational mesh is composed of
120,000 cells with 301 nodes in the steamwise direction and 401 nodes in the radial direction. The mesh
size in the radial direction is diminished toward the intake surface to resolve the turbulent boundary layer
(the non-dimensional distance from the nearest wall y+ is less than 1 on the whole), as shown in Fig. 6.
The intake surface is assumed to be isothermal with a constant static temperature of 300 K and the
other boundary conditions are summarized in Fig. 6.

Pressure far field
Isothermal wall

Centerline Pressure outlet

Fig 6. Computational mesh and boundary conditions

The numerical setting and computational mesh are validated in the preceding study [14] and further
validation for axisymmetric 3-ramp intakes can be found in References [24, 25].

3. Results
3.1. Validation of MDPAEA
The optimal solution search ability of MDPAEA is investigated for 3 test problems by comparing with
NSGA-II. The test problems employed on the preceding study conducted by Deb et al. are also employed
in the present study. The problem settings are summarized in Table 4. The optimization process is
continued until the 45th generation for MDPAEA and the 50th generation for NSGA-II with 200 individuals
in the population pool. A training dataset comprising 1000 individuals is used to build models to predict
objective/constraint function values, and thus the total number of solution evaluations is the same
between MDPAEA and NSGA-II.

The obtained non-dominated solutions are compared between MDPAEA and NSGA-II in Fig. 7. It can be
seen that the distributions of non-dominated solutions obtained via MDPAEA contain those obtained via
NSGA-II but are more widely spread than them, particularly for CONSTR (Fig. 7 (a)) and TNK (Fig. 7 (c)).
This difference in the distributions of non-dominated solutions is attributed to the selection of the initial
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Table 4. Test problems used in this study (all objective functions are to be minimized)

Test problem Variable ranges Objective functions Constraint functions

CONSTR
x1 2 [0.1, 1]

x2 2 [0, 5]

f1 = x1

f2 = 1+x2
x1

g1 = x2 + 5x1 � 6

g2 = �x2 + 9x1 � 1

SRN
x1 2 [�20, 20]

x2 2 [�20, 20]

f1 = (x1 � 2)2 + (x2 � 1)2 + 2

f2 = 9x1 � (x2 � 1)2
g1 = x2

1 + x2
2  225

g2 = x1 � 3x2  �10

TNK
x1 2 [0,⇡]

x2 2 [0,⇡]

f1 = x1

f2 = x2

g1 = �x2
1 � x2

2 + 1+

0.1 cos
⇣
16 arctan

⇣
x1
x2

⌘⌘
 0

g2 = (x1 � 0.5)2 + (x2 � 0.5)2  0.5

population because the evolutionary procedures of MDPAEA are the same as those of NSGA-II except
for the selection of the initial population. Superior individuals have been selected from the training
dataset for the initial population of MDPAEA to accelerate solution search, while they have been selected
randomly for NSGA-II.

(a) CONSTR (b) SRN (c) TNK

Fig 7. Comparison of non-dominated solutions obtained via MDPAEA with those obtained via NSGA-II

The number of true function evaluations in the optimization process is also compared between MDPAEA
and NSGA-II in Table 5. It has been found that MDPAEA substantially reduces true function evaluations
by employing surrogate prediction, in particular in cases of CONSTR and TNK. Compared with these
two test problems, SRN requires a considerably larger number of true function evaluations while the
number of true function evaluations of MDPAEA is still almost half of that of NSGA-II. This is because
the non-dominated solutions of SRN has converged well to the true Pareto front albeit an increase in
the number of true function evaluations for validation.

Table 5. Comparison of number of true function evaluations between MDPAEA and NSGA-II

CONSTR SRN TNK
MDPAEA 1251+1000 4691+1000 325+1000
NSGA-II 10000 10000 10000

3.2. Scramjet intake design optimization
3.2.1. Overview and physical insights
Axisymmetric 3-ramp intake design has been optimized in terms of compression efficiency and drag by
using MDPAEA. The population of 96 individuals has been evolved to the 30th generation and the model
prediction has been employed in the entire optimization process. Thirty-seven non-dominated solutions
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have been found from the optimization over 30 generations. The distributions of the resultant solutions
are shown in the objective function space and in the form of a parallel coordinate plot in Fig. 8.

(a) Objective function space (b) Parallel coordinate plot

Fig 8. Scramjet intake design optimization results

It can be seen in Fig. 8 (a) that the non-dominated solutions can be divided into two groups, i.e.,
the solutions characterized by high compression efficiency (low compression efficiency loss) and large
drag and those that exist near the boundary between feasible and infeasible solutions. Former and latter
clusters are named Clusters A and B, respectively, and the solution with the minimum drag and that with
the minimum compression efficiency loss are selected from each cluster to scrutinize the characteristics
of solutions in each cluster in Fig. 9 (a). It is interesting to note that the compression efficiency of the
solution A2 is close to that of the solution B1 whereas the drag differs substantially. This indicates that
the solutions in each cluster have different characteristics. The geometries of non-dominated solutions
are visualized in Fig. 9 (b) and the solutions in Cluster A is longer than those in Cluster B. The flowfields
of the selected non-dominated solutions are compared with respect to static temperature distributions
in Fig. 10. The large drag of the solutions in Cluster A is caused by a large number of shock reflections
that increases pressure drag and longer geometries that increase viscous drag, while high compression
efficiency is achieved owing to a large amount of heat transfer across the large intake surface. In
contrast, the solutions in Cluster B have shorter geometries, allowing for smaller drag at the cost of
reduced compression efficiency.

(a) Clusters and selected non-dominated so-
lutions (b) Geometries of selected non-dominated solutions

Fig 9. Clustering and selection of non-dominated solutions
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(a) A1 and A2 (b) B1 and B2

Fig 10. Static temperature distributions of selected non-dominated solutions

The optimality of the intake design has been discussed under the calorically perfect gas assumption
in the preceding study [14], which allows the optimality of the present non-dominated solutions to
be verified theoretically. The distributions of mean exit temperature and heat transfer across intake
surface are shown with respect to contraction ratio in Fig. 11. The theory has verified that mean exit
temperature should be minimized for the given contaction ratio to minimize both drag and compression
efficiency simultaneously and heat transfer causes the trade-off between compression efficiency and
drag [14]. As expected from the theory, the resultant non-dominated solutions have the minimum
mean exit temperature for given contraction ratio in Fig. 11 (a). The non-dominated solutions in Cluster
B have the mean exit temperature around 850 K due to the constraint function and have the possible
maximum heat transfer to minimize drag in Fig. 11 (b).

(a) Mean exit temperature (b) Heat transfer

Fig 11. Variations of static temperature and heat transfer with respect to contraction ratio

All individuals evaluated by CFD or prediction have been employed in the analysis for Fig. 11. Fast
flowfield prediction allows for the generation of an informative physics-based database, without which
it would be difficult to gain physical insight into performance parameters other than objective/constraint
functions at a low computational cost. The availability of predicted flowfields and the prediction model
thus enables various post analyses.

3.2.2. Performance of MDPAEA
The performance of MDPAEA is assessed from the viewpoint of computational cost and prediction accu-
racy. Figure 12 compares the number of true function evaluations (CFD simulations) between MDPAEA
and NSGA-II. Similarly to the results of the test problems in Table 5, the number of true function eval-
uations is also reduced to less than 50 % of NSGA-II for the intake design optimizaton by replacing
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them with model prediction. This indicates that MDPAEA can allow for a larger population size com-
pared to NSGA-II at the same computational cost. Another main factor of the computational cost is the
training of the prediction model. In the present study, a multilayer perceptron neural network is em-
ployed and requires relatively large computational cost for training. The computational time for training
and re-training with 200 additional training data is summarized in Table 6. While the present model
requires a larger computational cost to provide prediction of multi-dimensional output, the fidelity of
the predictive model is higher than those of general surrogate models which predict a scalar value,
being capable of predicting flowfields at a high fidelity that is comparable to that of the true function
evaluation. Furthermore, MDPAEA can save the total computational cost in comparison with NSGA-II.
It can thus be said that MDPAEA can reduce the computational cost while maintaining the fidelity of the
solution search, whereas general surrogate-assisted/based EA can reduce the computational cost at the
penalty of reduced fidelity.

Fig 12. Comparison of numbers of CFD simulations (true function evaluations)

Table 6. Comparison of computation time for training among models

Original model Retrained with 200 additional training data
1 epoch [sec] 317.2 444.1
Total [h] 22.03 3.08

The accuracy of the prediction model used in the optimization is investigated for two test datasets, i.e.,
(1) the dataset via LHS which represents the entire design space and (2) the test dataset obtained in the
optimization process which includes the individuals near the Pareto optimal front comprising the non-
dominated solutions. The prediction accuracy for those datasets is compared among the original model
and those retrained every 10 generations in Fig. 13. It has been found that the total RMSE for the test
data via LHS is similar among the 4 models (Fig. 13 (a)) and the total RMSE for the data obtained in the
optimization process decreases as the number of generation hence the number of retraining increases
(Fig. 13 (b)). This indicates that the prediction accuracy for the individuals near the Pareto optimal front
is improved by the retraining process, whereas that for the entire design space is not affected, as seen
in Figs. 13 (b) and (a), respectively. Since the prediction is accurate enough for the entire design space
and much more accurate for the individuals in the vicinity of the Pareto optimal front, the model can be
applied to the post analysis as well as other studies such as optimization and parametric studies. This
conduces to efficient knowledge discovery for the subject of optimization.
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(a) Test data via LHS (b) Test data obtained in optimization process

Fig 13. Variations of model accuracy through retraining

4. Conclusions
The present study has proposed an evolutionary algorithm assisted by multi-dimensional predictive
modeling via deep learning to realize a high-fidelity and low-cost design optimization of scramjet intakes.
The algorithm employs the prediction of flowfields inside scramjet intakes using a multilayer perceptron.
The proposed algorithm is applied to several mathematical optimization test problems for validation and
an optimization study of axisymmetric 3-ramp scramjet intake design. The utility and applicability are
then examined by scrutinizing the optimization results.

The algorithm of the proposed methodology is based on a non-dominated sorting evolutionary algorithm
NSGA-II and the performance is therefore assessed in comparison with NSGA-II for several test problems.
The proposed approach has substantially reduced the total number of true function evaluations, albeit
the cost required to prepare datasets for multi-dimensional predictive modeling. It is interesting to note
that the proposed methodology tends to yield a widespread Pareto optimal front than that obtained via
NSGA-II. The difference is attributed to the difference in the selection of the initial population.

An optimization study of axisymmetric 3-ramp intakes has then been conducted using the multi-dimensional
prediction assisted evolutionary algorithm. The flow prediction model has been retrained every 10 gen-
erations in the optimization process using the CFD data which are obtained to verify the provisional
non-dominated solutions. This improves the prediction accuracy for the individuals around the Pareto
optimal front without deteriorating the global prediction accuracy. The post analysis has been conducted
not only for the non-dominated solutions but also the other solutions by scrutinizing the physics-based
dataset generated via flow prediction and CFD. The large number of predicted flowfields has offered use-
ful insights into not only objective/constraint functions but also other performance parameters, demon-
strating the reasonable ability of design exploration.

While the present study focuses on the development of the multi-dimensional prediction assisted evolu-
tionary algorithm to reduce the number of true function evaluations, another advantage of the proposed
algorithm is the reusability of the flow prediction model. Since the prediction accuracy of the model is
improved in the optimization process, the model can be employed in different studies such as design
optimization with different objective/constraint functions or different algorithms and sensitivity analysis.
The ability of flexible post analysis is a key to elucidating the rationales of excellent design. Further
effort will be dedicated to enhancing the utility of the multi-dimensional prediction assisted evolutionary
algorithms, aiming to realize high-fidelity but low-cost design exploration and knowledge discovery for
fluid engineering.
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