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Abstract 

Predicting the position of the laminar-turbulent transition in high-speed boundary-layer flows is 

mandatory to estimate some key parameters such as the skin friction and the wall heat flux or the 
efficiency of a control surface. Linear stability theory has been used for many years to describe the 

amplification of small upstream fluctuations, which can be related to the transition position. 
Computational tools are developed to address more complex flow stability problems at higher 

velocities. However, some low-order models are still needed to give an estimation of transition 

location in RANS computations, on smooth surfaces as well as for localized indentations such as steps 
or gaps. Such models originally derived for low speed flows are progressively extended to higher 

Mach numbers. 
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Nomenclature 

Latin Greek 
A – wave amplitude Λ2 – Pohlhausen parameter 
Cf – friction coefficient α – axial wave number (m-1) 

M – Mach number β – transverse wave number (m-1) 
N – amplification factor δ1 – displacement thickness (m) 

R – Reynolds number  – dynamic viscosity (Pl) 

T – temperature (K)  – momentum thickness (m) 

U – streamwise mean velocity (m.s-1) ρ – density (kg.m-3) 

V – normal mean velocity (m.s-1) ψ – wave vector angle (deg.) 
W – crosswise mean velocity (m.s-1) ω – angular frequency (s-1) 

f – frequency (Hz)  
p – pressure (Pa) Superscripts 
q – vector eigenfunction ¯ – mean value 

t – time (s) ´ – fluctuating value 
u – streamwise velocity fluctuation (m.s-1)  

v – normal velocity fluctuation (m.s-1) Subscripts 
w – crosswise velocity fluctuation (m.s-1) e – value at the boundary layer edge 

x – streamwise coordinate (m) i – imaginary part 

y – normal coordinate (m) r – real part 
z – crosswise coordinate (m) w – wall value 

 0 – initial value 

1. Introduction 

The laminar-turbulent transition of the boundary layer induces a strong increase in the skin friction 

and the wall heat flux, which are of key importance for hypersonic flows. Indeed, estimating the 
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maximum heat flux encountered during an atmospheric re-entry is mandatory to design the correct 
thermal protection system. An oversized thermal protection induces a useless mass increase and a 

consequent payload decrease. Moreover, the laminar-turbulent transition can modify the shock-
wave/boundary-layer interaction occurring on a control surface hinge and thus change its efficiency 

for flight control. 

On smooth surfaces, the laminar-turbulent transition is mainly due to the intrinsic instability of the 
boundary layer, inducing the exponential amplification of small fluctuations occurring in the oncoming 

flow, due to the natural atmospheric turbulence. As long as the amplitude of the perturbations 
remains low, they can be described by the linearized Navier-Stokes equations. When the amplitude of 

these fluctuations reaches a given threshold, nonlinear phenomena arise and they trigger very quickly 
the transition. The purpose of the flow stability analysis consists in computing an estimation of the 

global amplification of the perturbations in the boundary layer, most often characterized by the 

exponential amplification coefficient known as “the N factor”. In the frame of the well-known eN 
theory, the transition location is estimated at the position where the N factor reaches a prescribed 

value NT, which depends on the free flow turbulence level. In flight, a value of 10 is frequently 
observed for NT, whereas lower values around 6-7 can be encountered in low-speed low-noise wind 

tunnels and even values as low as 1 in noisy blow-down hypersonic facilities. Quiet hypersonic wind 

tunnels have been specifically designed to reproduce flight Mach number, Reynolds number and NT. 
Only in these special facilities the mechanisms of laminar-turbulent transition can be similar to that 

occurring in flight. 

The purpose of this paper is to present some recent works carried out at ONERA concerning the 

laminar-turbulent transition modelling. Whereas boundary-layer stability analysis can provide valuable 
information about the transition location, this approach is not easy to couple with a RANS 

computation. Therefore, some transition criteria have been developed for several decades for this 

purpose. On a smooth wall, they are derived by synthesizing stability results for a family of self-
similar boundary-layer profiles, created by varying some characteristic parameters such as the Mach 

number and the streamwise pressure gradient. The stability of any boundary-layer profile can then be 
estimated from the model according to the values of the corresponding parameters. The effect of 

surface defaults on the transition location can also be modelled from a series of stability calculations, 

for different flow conditions past different geometries of defaults. In this paper, we will focus on the 

effect of transverse gaps.  

The next section presents the different linear stability computation tools that have been developed up 
to now at ONERA or are intended for the near future. Section 3 is devoted to transition criteria on a 

smooth surface, to be included in RANS solvers. Then the last section 4 concerns the modelling of the 

influence of a transverse gap on the transition location. 

2. Linear stability analysis tools 

2.1. Common features 

A set of computational tools for linear stability analysis has been developed for many years at ONERA 

Toulouse centre. Beside the legacy code CASTET developed by D. Arnal for local linear stability 
analysis of boundary layers, a new generation of solvers has emerged, adapted to various geometries 

and flow conditions. These solvers use similar internal architectures. For all of them, the linearized 

equations are derived with the appropriate hypotheses with the computational algebra software 
Maple. The elementary matrices corresponding to the linear equations at the current point are then 

directly transferred in the Fortran 2000 code. The numerical discretization schemes are also derived in 
the same manner. In this way, the risk of term omission or algebraic error is minimized. Some 

reference solutions can also be numerically computed directly with Maple in order to validate the 

whole Fortran code. The main matrix operations such as eigenvalue computations are carried out by 

standard linear algebra libraries such as Lapack or Arpack. 

The first step to get the linearized Navier-Stokes equations consists in splitting all the variables into a 

time averaged value and a fluctuating part: 

 𝑞(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞̅(𝑥, 𝑦, 𝑧) + 𝑞′(𝑥, 𝑦, 𝑧, 𝑡) (1) 
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where q represents any flow variable such as velocity component, enthalpy, pressure or density. 

Then, for modal analysis, a Fourier transform is applied on the time variable: 

𝑞′(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞̃(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜔𝑡 

where  is the angular frequency. The next steps will consist in applying further simplifications to the 

equations, taking advantage of the hypotheses on the problem. 

2.2. Local linear stability analysis 

The basic case for stability analysis concerns a boundary layer with slow evolution in the streamwise 
and crosswise directions and strong variation only along the normal coordinate. Then the perturbation 

can be sought for under the form of a one-dimensional normal mode at a prescribed frequency: 

 𝑞′⁡(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞̂(𝑦)exp[𝑖(𝛼𝑥 + 𝛽𝑧 − 𝜔𝑡)] (2) 

where α and β are respectively the streamwise and crosswise wave numbers. The angle ψ of the 

wave vector with the x axis is defined such as β = α tan(ψ). This approach will be named LST-1D, 

since only y-derivatives are retained in the equations. Usually, ω and β are real and prescribed 
whereas α is complex and unknown. The imaginary part of α represents the streamwise growth rate of 
the perturbation. After discretization of the differential equations along the normal y coordinate, the 
linearized Navier-Stokes equations can be recast in a generalized eigenvalue problem for α: 

 𝐴. 𝑋 = 𝛼𝐵. 𝑋 (3) 

where X is the vector containing all the discretized eigenfunctions [𝑢̂, 𝑣̂, 𝑤̂, 𝑝̂, 𝑇̂] and A and B are 

square matrices depending of β, ω, and the mean flow. When α is computed at each streamwise 
abscissa, the N factor can be derived as 

 𝑁 = ln
𝐴(𝑥)

𝐴0
= ∫ −𝛼𝑖

𝑥

0
𝑑𝑥 (4) 

The Fortran code MAMOUT is specially devoted to the numerical resolution of Eq. 3. It can handle 
planar, cylindrical or 3D Cartesian geometries. Three models of fluids are presently implemented: 

incompressible fluid, perfect gas and chemical equilibrium mixture described by a tabulated Mollier 

diagram. The program manages automatically the processing of a series of boundary-layer profiles, 

with a double sweep on a frequency range and on  angle. An example of computation of Mack’s 

mode amplification on a cone with rigid or porous wall can be found in reference [1], with 

comparisons between MAMOUT and DNS results. An extension to chemical nonequilibrium mixtures of 

reacting gases is presently under progress. 

For cases where the crosswise variation of the mean flow can no longer be neglected, a different 

ansatz must be used, with two-dimensional eigenfunctions: 

 𝑞′⁡(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞̂(𝑦, 𝑧)exp[𝑖(𝛼𝑥 − 𝜔𝑡)] (5) 

The eigenvalue problem still corresponds to Eq. 3 but the matrices A and B are now larger. This 

approach can be named LST-2D or bilocal. The name BiGlobal is sometimes used also but it may 
create a confusion with global stability analysis in the streamwise direction, whereas the present 

approach concerns a cross-stream plane and is therefore local in the streamwise direction. 

The Fortran code BIGSAM can address LST-2D problems for incompressible fluid or perfect gas. It has 
been successfully applied by Lefieux et al. [2] to the stability analysis of a cross-stream vortex 

generated by a hypersonic boundary layer past an isolated roughness on a flat plate. The 

amplification predicted by LST-2D compares reasonably well with DNS results. 

2.3. Parabolized stability equations 

Whereas in the frame of local stability analysis the streamwise gradients of the base flow are 

neglected, a better level of approximation can be obtained with the Parabolized Stability Equations 
(PSE). Now the x-derivatives of the base flow and of the wave number α are taken into consideration. 

Only the second-order x-derivatives are neglected. For PSE-2D, a Fourier transform is still applied on 

the crosswise coordinate z. A modified ansatz is used: 

 𝑞′⁡(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞̂(𝑥, 𝑦)exp[𝑖(∫ 𝛼(𝑥)𝑑𝑥
𝑥

0
+ 𝛽𝑧 − 𝜔𝑡)] (6) 
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The main difference with Eq. 2 is the dependency of both the shape function 𝑞̂ and the oscillatory 

exponential term on the streamwise coordinate x. The idea is that the fast oscillations of the wave are 

contained in the exponential term whereas the slow variations due to the axial evolution of the base 

flow are included in the shape functions. This can be achieved through a normalization condition such 

as: 

 ∫ 𝑞∗
𝜕𝑞

𝜕𝑥
𝑑𝑦 = 0

∞

0
 (7) 

This condition must be solved by iteration on α, together with the system obtained by reporting Eq. 6 

into the linearized Navier-Stokes equations. In spite of their name, the PSE are not fully parabolic, 

however they can be solved by forward marching, taking into account some restrictions on the step 
size. A local eigenmode is usually taken as initial condition at the upstream station. The PSE offer a 

fast and costless manner to improve the results of the strictly local stability approach for the 

description of the most unstable mode in a boundary-layer or in a jet shear-layer, for example. 

Another Fortran code named PASTEQ solves the PSE-2D in curvilinear coordinates for different 

geometries. To simplify the pre-processing, the base flow is provided in Cartesian coordinates. 

Incompressible fluid, perfect gas or chemical equilibrium gas mixture are presently available. 

Some results of PSE computations on a cone are plotted in Fig. 1, together with LST results. It 
corresponds to a generic cone with 7° half angle, 1.1 m length and 2.5 mm nose radius tested in 

JAXA’s shock tube HIEST [3]. The Mach number is about 7.7 and the stagnation enthalpy is 

3.2 MJ/kg. With a cold wall assumed at 300 K, the temperature inside the boundary layer does not 
exceed 1500 K except close to the nose and therefore, a perfect gas hypothesis can be assumed for 

stability computations. The instability found corresponds to Mack’s second mode, where the most 
amplified waves are parallel to the x-axis (β = 0), at very high frequencies, requiring special sensors 

such as PCB to be recorded during the tests. Knowing the transition location, observed in the 
experiment near x = 0.8 m, will provide the value of NT for this facility. In the present case, both 

approaches give rather similar results but the PSE predict a slightly lower amplification level. 

 

Fig. 1 N factor on a 7° cone in HIEST at Mach 7.8 

When the dependency of the base flow on the crosswise coordinate z can no longer be neglected, 

three-dimensional shape functions can be used, with slow variation along x and strong variations 

along y and z, according to the following ansatz: 

 𝑞′⁡(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞̂(𝑥, 𝑦, 𝑧)exp[𝑖(∫ 𝛼(𝑥)𝑑𝑥
𝑥

0
− 𝜔𝑡)] (8) 

The PSE-3D are still solved by forward marching along x but now the shape functions must be solved 

at each station in a cross-stream plane. 
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An extension of PASTEQ code is planned to solve PSE-3D, first for incompressible fluids, then later for 
perfect gases. This capability will be useful to study instabilities in the wake of an isolated roughness 

and to try to improve the results provided by LST-2D. Other configurations such as a cone with an 

angle of attack or a non-circular cone are also in the range of application of PSE-3D. 

2.4. Other methods 

Both LST and PSE approaches rely upon the hypothesis of slowly varying mean flow in the 
streamwise direction. When this is no longer the case, for example when the wall exhibits an 

indentation such as an angle, a step or a gap, the concept of axial wave number is no longer relevant 
in the neighbouring of the indentation. Then a global stability analysis must be performed, where all 

the domain must be considered globally. Such tools are developed at ONERA DAAA, located in 
Meudon centre, near Paris. These tools are based in particular on the resolvent theory, and they have 

shown very powerful capacity to analyse the instability of a separated bubble caused by shock 

wave/boundary layer interaction on a ramp [4,5]. Similar approaches are also called Input/Output 

analysis in USA. 

However, these methods require a lot of computational resources to compute singular values of large 
matrices and they are not suitable for parametric studies where a large number of configurations 

must be processed. Therefore a more simple approach has emerged for about a decade, called 

Harmonic Linearized Navier-Stokes equations (HLNS). The whole fluid domain is considered globally 
but instead of seeking global eigenmodes, the forced response to an harmonic perturbation imposed 

at the domain inlet will be computed. Discretizing the linear Navier-Stokes equations in the frequency 
domain, the resolution only requires to solve a linear system A.X = B, which can be done efficiently 

with parallel linear algebra libraries. Attention must be paid to apply a suitable non-reflecting 

boundary condition at the domain outlet. 

3. Transition modelling on a smooth surface 

When computing a steady RANS solution on any kind of body, it is necessary to estimate the position 
of the laminar-turbulent transition, downstream of which the turbulence model must be activated. 

Even the basic LST-1D presented above is too computationally expensive to be directly included into a 
RANS solver. Moreover, stability computations often require human control and are difficult to fully 

automate. Semi-empirical transition models were therefore early developed to provide a fast estimate 

of the transition location. 

The first transition model developed at ONERA by Arnal, Habiballah and Delcour in 1984 was the AHD 

criterion, devoted to streamwise instability of Tollmien-Schlichting waves [6]. It was later extended 
first to Mach 1.6 and recently up to Mach 4 [7], taking into consideration the fact that for supersonic 

flows the most unstable waves are no longer streamwise but oblique waves. AHD4 is a piecewise 

analytical criterion taking into account only Mack’s first mode, which generate an estimate of a 
transition Reynolds number in a way similar to AHD. AHD4 also contains a wall temperature 

correction. Additional work is under progress to reach Mach 8 with a new criterion named JP8 [8]. 

To derive these longitudinal criteria, a family of boundary-layer profiles was generated from 

compressible Falkner-Skan locally self-similar solutions, indexed by the four parameters [Me, Tie, 

Tw/Tf, 2], where Me and Tie are respectively the Mach number and the stagnation temperature at the 

boundary-layer edge, Tw is the wall temperature, Tf is the temperature which would be obtained on 

an adiabatic wall, and 2 is the Pohlhausen parameter defined by 

 Λ2 =⁡
𝜌𝑒𝜃

2

𝜇𝑒
⁡
𝑑𝑈𝑒

𝑑𝑥
 (9) 

This parameter represents the streamwise velocity (or pressure) gradient. For high Mach numbers, it 
can be superseded by the parameter 𝐶𝑓/2⁡⁡𝑅𝜃. Then stability computations were performed with the 

standard local approach. The amplification was then modelled by a simple linear relation: 

 for 𝑅𝜃 > 𝑅𝜃𝑐𝑟: 𝑁 = 𝐴⁡(𝑅𝜃 − 𝑅𝜃0) (10) 

where the critical Reynolds number 𝑅𝜃𝑐𝑟, the slope 𝐴 = ⁡
𝑑𝑁

𝑑𝑅𝜃
 and the parameter R0 are computed by 

analytical fits or interpolation on the four parameters defining the self-similar solutions. Eq. 10 can be 
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used inside a RANS solver to estimate the local N factor, knowing the local boundary-layer 

parameters. 

Above Mach 5, the Tollmien-Schlichting instability, labelled as first mode, is overtaken by Mack’s 
second mode, with a higher streamwise amplification. Based on lookup tables, the JP8 model 

integrates the contributions of both first and second modes, via an envelope method, and it provides 

an estimation of the local N factor, representing the global amplification of the perturbations. The 
initial formulation is limited to adiabatic wall conditions, but work started taking into account a cold 

wall condition with good prospects. The Fig. 2 shows a comparison of Reynolds numbers RθT at 
transition location, provided by the previous AHD4 criterion, the new JP8 criterion, and local linear 

stability computations, for a boundary layer developing past an adiabatic flat plate at a constant Mach 
number between 0 and 8. In this case, without pressure gradient, the boundary layer is really self-

similar and the JP8 model behaves satisfactorily. The slope break beyond Mach 6 is due to the 

predominance of the second mode. 

 

Fig. 2 Transition prediction on a smooth flat plate 

Then the effect of the streamwise velocity gradient was investigated, for three different Mach 

numbers. The synthetic boundary layer profiles deduced from self-similar solutions were completed 

by true solutions of the Prandtl boundary-layer equations computed with the same velocity gradient 
as the self-similar solution at the boundary-layer edge. The wall was still assumed adiabatic. Both 

solutions provide identical flow in the final section but the main difference is that the Prandtl solutions 
take into account the streamwise gradient of the Mach number, fixed by the isentropic equation in 

the inviscid flow, whereas the self-similar solutions assume a constant Mach number outside of the 
boundary layer. The flow history is thus different. Both boundary layer solutions were submitted to 

local stability analysis. The results are summarised in Fig. 3 where the slope (representing the local 

growth rate) is plotted as function of the Pohlhausen parameter. The three criteria AHD low speed, 
AHD Mach 1.6 and AHD Mach 4 are compared to the exact amplifications computed on the basis of 

the self-similar profiles and on the Prandtl solutions. Computations have been made at Mach 0.2, 1.1 
and 2.5. All the AHD models reproduce rather correctly the stability computations based on the self-

similar profiles, except at Mach 0.2 for high positive values of the velocity gradient. At Mach 0.2, the 

flow is really self-similar and the effect of the Mach number is weak (incompressible regime). 
Therefore the stability computations based on self-similar solutions are very close to the results based 

on Prandtl solutions. At Mach 1.1 and 2.5, the AHD models agree with the stability computations 
based on the Prandtl solutions for moderate values of the Pohlhausen parameter, but the agreement 

range is seen to decrease when the Mach number increases: some discrepancies between self-similar 

and Prandtl solutions already appear at Mach 2.5 for negative velocity gradients. 

The conclusion that can be drawn from the above result is that the AHD-type models are rather 

powerful for moderate supersonic flows but that the direct extension to higher Mach numbers induces 
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some systematic errors for large positive or negative velocity gradients. A reflection is under progress 
to find how to improve the models in this case. However, many hypersonic vehicles have surfaces 

with low streamwise curvature, except in the nose region where the transition is not likely to occur. 

Thus the existing criteria can nevertheless be helpful, if used carefully. 

 

Fig. 3 N factor slope estimate with positive or negative pressure gradient 

4. Effect of a transverse gap on the transition location 

The role of surface imperfections on transition location has also been the subject of several 

experimental and theoretical works at ONERA. The effect of a transverse gap on a two-dimensional 

boundary layer has been particularly investigated. The selected geometry is a flat plate with a 
rectangular gap. A series of flow configurations has been selected, varying the gap size and aspect 

ratio with regard to the boundary-layer thickness. A first model named ΔN was derived for subsonic 
flows, based on local linear stability computations [9]. The model provides two quantities: Npeak and 

ΔNfar (Fig. 7). The first one represents an estimation of the N factor value at the gap abscissa. If this 

parameter exceeds the prescribed NT value, transition occurs immediately above the gap. Otherwise, 
the N factor value downstream of the gap will be the sum of the N factor on an equivalent smooth 

plate plus ΔNfar. In this way the transition is seen to move upstream gradually. This model was 
compared with experimental data. The same approach has been also applied to forward- or 

backward-facing steps. 

 

Fig. 4 Effect of a transverse gap on transition location 
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An improved approach, based no longer on local stability but on two-dimensional harmonic linearized 
Navier-Stokes solutions, has been recently developed. It provides a better evaluation of the global 

amplification of an oncoming wave past the gap. The principle is shown in Fig. 5. The HLNS equations 
are solved in a two-dimensional domain above the gap. A local Tollmien-Schlichting eigenmode at a 

suitable frequency is imposed as forcing source at the domain inlet. Fig. 6 shows an example of 

solution, for the axial velocity component, in a generic low-speed case. The oncoming TS wave is 
strongly perturbed by the gap but downstream the TS wave is recovered with a larger amplitude. The 

corresponding N factor is plotted in Fig. 7, together with the N factor obtained on a smooth plate and 
the ΔN. The N factor is seen to undergo a strong increase above the gap, due to high frequency 

inflectional instabilities in the shear layer. But at the gap trailing edge there is a sudden decrease in 

the fluctuation amplitude, which cannot be predicted by purely local stability analysis. 

In this way, the accuracy of the existing ΔN model can be improved. A new model based on 

parametric HLNS computations coupled with a neural network has just been developed [11]. This 
promising approach is up to now limited to incompressible flows but the extension to compressible 

flows will be undertaken in the near future. In this way it could be possible to address the problem of 

transition triggering by gaps between thermal protection tiles on re-entry vehicles. 

 

Fig. 5 HLNS computational domain 

 

Fig. 6 Axial velocity fluctuation past a gap, computed with HLNS 
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Fig. 7 N factor evolution past a gap, computed with HLNS 
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