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Abstract

Classical methods to simulate hypersonic flows rely on finite volume approaches which are highly sen-

sitive to the computational mesh and the Riemann solver chosen. This paper studies the methods to

mitigate these sensibilities using high-order discontinuous Galerkin scheme. In particular, artificial vis-

cosity and limiting methods are reviewed and compared on several test cases. Despite the loss of

accuracy of limiting methods, they have been proved to be more robust to capture strong shock if com-

bined with mesh adaptation. Artificial viscosity method relax the constraints on the mesh but numerical

experiments have shown that they are less robust to capture strong shock and might require fine tuning

of user defined parameters.
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1. Introduction
The numerical prediction of the heat flux for hypersonic flight is crucial for the design of thermal protection

system. Most Computational Fluid Dynamics (CFD) codes used to simulate hypersonic flow rely on Finite

Volume (FV) discretization schemes. On one hand these have shown to provide accurate evaluation

of the heat flux [5, 16] but on the other hand, FV method suffers from high sensitivity to the mesh

alignment with the shock and the choice of the inviscid flux function [15]. High order schemes such

as Discontinuous Galerkin (DG) method offer advantages which can mitigate those drawbacks. DG

discretization is promising because it provides high order accuracy on unstructured meshes, geometric

flexibility, easy local adaptation in mesh size and polynomial interpolation order (h/p adaptivity). In

addition, comparing to classical finite volume discretization, the scheme is highly compact and allows for

a very efficient and scalable implementation. Nonetheless, the method has not been used massively for

industrial applications for its lack of maturity and robustness. In particular, themethod is quite sensitive to

capture under-resolved features of the problem such as shocks or strong gradients [25]. Recent efforts

in the DG community have been focused on improving shock detection and shock capturing method [25]

showing promising results to simulate hypersonic flows [8, 26, 7].

The treatment of shocks for high-order methods is an active research field nowadays [8]. Shock fitting

and shock capturing methods are the two main strategies found in the literature to treat shocks within

a high-order method [24]. Shock fitting method uses a grid conformal with the shock [24] hence the

discontinuity can be captured by the DG scheme. Theoretically, the method computes with accuracy

supersonic or hypersonic flow if the mesh is perfectly aligned with the shock. The later is complex to

ensure in practice. Indeed, even for academic cases where the shock position can be computed ana-

lytically the numerical position can be slightly different which will result in stalling or failing convergence.

For unsteady computations, this requires also to adapt the mesh continuously with the position of the
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shock. Although extension to treat shock-shock interactions exists, the complexity makes it not ideal and

therefore the method has been progressively abandoned and replaced by the prevailing shock capturing

method. The shock capturing strategy proposes to capture the shock within the cell. Several methods

exist to stabilize the computation among which the most important are limiting [2, 10, 4, 7], reconstruction

[13, 29], artificial viscosity [32], and filtering methods [30, 22]. These methods are also common within

the FV approach. This paper focuses on limiting and artificial viscosity methods. While the first one

limits the order of the interpolation in the strong gradient region of the domain to control the oscillation,

the second adds viscosity to smooth the solution enabling the scheme to capture it. Both methods are

implemented within the Argo solver. Argo is a high-fidelity multidimensional and multi-physics platform

based on a Discontinuous Galerkin discretization [14, 6, 27].

This paper will present the current effort to extend the Argo code to treat hypersonic flow. First, the

equations solved and the shock capturing approaches are detailed. The advantages and disadvantages

of the methods are summarized. Then, the results section analyses different tests cases to evaluate the

two strategies to capture the shock. Finally, a validation test case in a high enthalpy facility is shown for

the limiting strategy.

2. Mathematical formulation
First, the physical modelling to simulate the flow is described. The second subsection details the two

shock capturing approaches investigated in this work. The DG scheme implemented is detailed in [14]

and is not recalled in this paper.

2.1. Governing equations

The compressible flow system of equations for mass, momentum and energy conservation can bewritten

as
∂U

∂t
+∇ · Fc = ∇ · Fd + S. (1)

with

Fc =

 ρiu

ρuu+ P I

ρuH

 , Fd =

 −ρYiVi

µ(∇u+∇ut)− 2
3∇ · uI

τ · u+ λ∇T − ρ
∑

i hiYiVi

 , S =

 ω̇i

0

0

 (2)

where, ρi is the partial density of each species, Yi is the mass fraction, Vi the diffusion velocity, u the

velocity vector, P is the pressure, H the total enthalpy of the mixture and ω̇i the chemistry production

term. The transport properties µ stands for the viscosity and λ for the thermal conductivity. The viscous
stress tensor τ is expressed in the F d of the momentum equation. The perfect gas law is used to close

the system of equations. The Argo solver assumes thermodynamic and transport properties variable

with the mixture composition and temperature but those can be set frozen during the computation. The

Argo solver is linked with the Mutation++ library [28] which provides the properties and reaction terms

depending onmechanism selected. For the species diffusion term, a Fick lawwith a Ramshaw projection

is used [27]. Note that the diffusive part and source term for the mass conservation equation disappears

for single species.

2.2. Shock capturing methods

Two strategies are tested within this work, limiting the polynomial order to capture the shock and adding

artificial viscosity in shock region. Both are detailed hereafter.

2.2.1. Limiting

In DG discretization, the spurious oscillations in the vicinity of the shock are directly caused by the

high-order interpolation used. Limiting methods lower the order of convergence near discontinuities

to eliminate the spurious oscillations. Limiters are very popular in the context of standard finite vol-

ume methods because of their ease of implementation, and several extensions for high-order numerical

schemes have been proposed [2, 10, 4]. The discretization of the convective terms in a DG scheme is a

high order extension of a classical upwind Finite Volume Method (FVM) [14]. It can be proven that if the

numerical flux is an E-flux, the Godunov scheme is positive which ensure energy stability and prevents
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the local solution extrema to be increased [19]. Therefore, DGM inherits these properties from the finite

volume method [27, 14]. Using a zero-order polynomial interpolation in the whole domain would there-

fore be equivalent as solving the problem with FVM at first order for the convective part. The naive and

simplest approach to simulate hypersonic problem is therefore to degrade the interpolation order of the

DG code to mimic a low order finite volume method. In order to keep the high order accuracy in smooth

region, this limiting should be restricted to troubled cells.However, the order of convergence near the

discontinuity is then reduced to one and the method is overdissipative [33]. More complex limiters exist

but these are complex to generalize for any type of element and convergence order [1, 9, 17, 3, 12].

Compatible low order discretization using the same number of degrees of freedom can also be used in

troubled cell to ensure robustness with respect to the mesh as proposed in Rueda et al.[26].

Within this work, the simplified limiting approach reduces to identify troubled cells and limit the scheme

to p = 0 to ensure robust discretization. The Argo code features h-p adaptation which enable to degrade
easily the polynomial order in the shock region. As a first step, the low interpolation order region is de-

fined a priori. Limiting the DG-scheme in the shock region to a first order scheme (zero polynomial order),

attention must be paid to the discretization of the diffusive part. The symmetric interior penalty method is

not consistent at p = 0 since only the penalty term remains. The Bassi-Rebay 2 (BR2) method has been

implemented for the diffusive part. For a scalar diffusion equation, the weak formulation becomes∫
Ωh

vh
∂uh

∂t
dΩ

−
∫
Ωh

∇vh · (A∇uh) dΩ

+

∫
Σh

(
〈AT∇vh〉 · [uh] + 〈A∇uh〉 · [vh]

)
dσ

+

∫
Σh

〈Arσ ([uh])〉 · [vh]dσ = 0,

where 〈·〉 and [·] are respectively the average and jump operator. Using the lift operator rσ, it is possible
to reconstruct the gradient at p = 0 using the jump at the boundary of each cell.

2.2.2. Artificial viscosity

Artificial viscosity method smears the discontinuities by adding artificial diffusion. It was proposed back

in 1950 by von Neumann et al. [32]. The addition of a viscous term is very easy to implement and flexi-

ble with respect to the discretization scheme selected or the mesh type used. However, these methods

usually rely on tuning parameters which are case-dependent and complex to determine. Recent pub-

lications have shown promising application of this method to simulate hypersonic flows [8, 31]. In this

work Laplacian viscosity is added to each equation

∂U

∂t
+∇ · Fc = ∇ · Fd + S+∇ · Fart, (3)

where the artificial diffusive flux is

Fart = µart∇U. (4)

The artificial viscosity is added only in troubled cells and depends on mesh and polynomial interpolation

used. To identify the troubled cells, the Argo solver uses the shock detector proposed by Persson and

Perraire [25]

S = log10
(u− up−1, u− up−1)Ωh

(u, u)Ωh

, (5)

where (., .)Ωh
is the inner product defined on the element Ωh. The variable u used to identified troubled

cell is the pressure to avoid addition of viscosity in the boundary layer. A threshold S0 is defined a priori

to identify troubled cells. On a troubled cell, the artificial viscosity is defined as

µart,0 = c
h

p
λmax, (6)
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where c is a scaling factor, h is the element size, p the polynomial order and λmax the maximum wave

speed. On the domain, combining the smoothed sensor and the elementwise viscosity (µ0), the artificial

viscosity becomes

µart =


0 if S < (S0 − κ),
µart,0

2

(
1 + sin

π(S−S0)
2κ

)
if (S0 − κ) < S < (S0 + κ),

µart,0 if S > (S0 + κ).

(7)

Three user defined parameters remain, the sensor threshold (S0), the scaling factor (c) and the smooth-
ing distance (κ). To avoid fine tuning of these parameters, Vandenhoek [31] is proposing for hypersonic
flow to use for the three parameters

S0 = −5 log(p)− 0.5,

c = 0.27 M̄∞−1
M∞

,

κ = 0.5 if explicit scheme 1.5 otherwise.

(8)

enabling to get free of tuning parameters. For transonic computation, the freestream mach number is

bounded to 1.2 (M̄∞) to ensure positive c. The Argo solver can either specify directly the three param-
eters or use the correlation proposed in Eq. 8. The computation of the artificial viscosity will lead to an

artificial viscosity constant per element which can be troublesome for the convergence. To smooth the

artificial viscosity field, two methods are available in Argo, the solution of an elliptic equation proposed

in Ching et al. [8] or a simple averaging at the vertex of the cell. The first is computationally expensive

but enables to ensure zero artificial diffusion at the wall.

3. Results

3.1. Richtmeyer-Meshkov instability

In order to study the effect of the artificial viscosity, this section investigates the results of simulating

the Richtmeyer-Meshkov instability. The test case is defined in [7], the two dimensional domain is

[0, 40/3]× [0, 40] on which a smoothed jump in pressure and density is set initially

ρ = d1,0.25

(
y −

(
18 + 2 cos

6πx

L

))
+ d3.22,0(|y − 4| − 2), (9)

p = d4.9,1(|y − 4| − 2), (10)

where da,b(·) = (a + 0.5(1 + tanh(15(·)))(b − a)). Inviscid flow with single species mixture, constant

thermodynamic and transport properties is assumed. The onset of instabilities and detailed flow fea-

tures will depend on the resolution and dispersion of the scheme. Figure 1 shows the density field at

different times on a cartesian grid of 64 ∗ 192 quadrangles with a p = 3 polynomial interpolation. The
Fig. 1 compares the results for the parameters proposed in [31] (left) and the results for a tuned value

of the artificial viscosity parameters (right). Values for c, S0 and κ are compared in Table 1. The sen-

sor proposed in [31] is more sensitive hence artificial viscosity is higher compared to the user defined

parameters chosen. Small discrepancy can already be observed for early time but with lower artificial

viscosity, progressively the small structures develop and lead to a different solution particularly notice-

able for larger time in Fig. 1. Note that without artificial viscosity, the solver does not converge and stops

prematurely. High-order methods without artificial viscosity show even better capture of the instabilities

as shown in [7, 26]. While this can have a negligible effect to compute the hypersonic flow around blunt

body in the absence of turbulent flow, the effect on gas-surface interaction when transition occurs should

be considered.
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Table 1. Artificial viscosity parameters for the Richmeyer-Meshkov.

c S0 κ

user defined 0.1 -1.5 2

correlation [31] 0.07 -2.8 1.5

t = 15[s] t = 20[s] t = 25[s] t = 30[s] t = 35[s]

Fig 1. Richtmeyer-Meshkov instabilities for two sets of parameters for the artificial viscosity strategy.

On the left, parameters proposed in [31] are used, on the right tuned values of C, S0 and κ is used.

3.2. Flow past a cylinder at Mach 6

The hypersonic flow at Mach 6 past a cylinder is used as benchmark to compare the different strategies.

The freestream conditions are given in Table 2.

Table 2. Parameters of the hypersonic test case past a cylinder.

D [m] M [−] P0 [bar] T0 [K] Twall [K]

1.0 6 20 500 300

First, the viscous low order solution (p = 0) which reduces to a first order finite volume scheme is

compared with a commercial code (CFD++). Both CFD++ and Argo are using the same mesh, standard

CGNS format is used to convert the mesh file easily for both softwares. The mesh is refined in the shock

and in the boundary layer. For Argo, the solution is constant per element and plotted as is, resulting in

the step pattern that can be observed in Fig. 2. Nonetheless, a very good agreement with CFD++ can be

observed. When limiting methods are used, the mesh should be sufficiently refined in the shock region

to limit the degradation of the accuracy. In order to adapt the mesh (h-adaptation) to a given solution

field, the strategy implemented within Argo lies in the use of metric based mesh adaptation methods

for simplex [20, 21, 11]. The definition of an optimal metric space is based on the minimisation of the

global interpolation error. Using the computation of the optimal metric space, the mesh is locally adapted

ensuring edge length compliance with the metric and element quality. The anisotropy, minimum mesh

size and complexity are user defined parameters. An example showing shock capturing for the viscous
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Fig 2. Hypersonic flow around a half cylinder at Mach 6. The iso-field values of the Mach number are

shown for Argo and the corresponding iso-values are depicted in white for CFD++.

test case (see Table 2) is observed in Fig. 3. The meshes and convergence histories are shown for

sequential adaptation. The convergence of the solver is greatly improved by using the previous solution

but to compare the convergence on the different meshes, same initial solution is considered here. Note

that the complexity is fixed to 1 hence the number of elements is similar in the different meshes. In order

to avoid having all the elements attracted in the shock layer during the refinement, the boundary layer

is frozen during the computation and quadrangles are used.

Secondly, in order to compare the shock capturing using limiting and artificial viscosity methods, the

inviscid flow in same conditions is computed. We compare the solution of a variable order limiting

only p in the shock region and the solution computed using artificial viscosity. The temperature field is

compared in Fig. 4(a). The solution are computed on the same mesh that can be observed in Fig. 5 for

which no particular attention is paid to refine in the shock region. This leads to a poor approximation

limiting the interpolation to p = 0 in the shock as can be observed in the temperature field in the left

of Fig. 4(a). For the artificial viscosity, parameters from [31] are used, the resulting artificial viscosity is

shown together with the mesh in Fig. 5. As discussed previously, mesh should be refined in the shock

region for limiting strategy. Figure 6 shows the comparison of the artificial viscosity with the coarse mesh

(see Fig. 5) compared with a limiting strategy for which the shock region has been heavily refined. The

smoothing of the shock due to the artificial viscosity method can clearly be observed along the stagnation

line in Fig. 4 (b) comparing the method with limiting interpolation order on different meshes.

Analysing the robustness, the computation of a p = 0 solution on the entire domain (equivalent to a

first order finite volume scheme) is always very robust and converges fast. When using a p adaptation

reducing only the interpolation order in the shock, attention must be paid to the mesh to ensure sufficient

resolution in the high-order region andmesh adaptation is required to limit area where p = 0. For artificial
viscosity, in theory, the computation is less sensitive to the mesh but, in practice, the solution is harder to

converge. Comparing to the limiting strategy, the computation per degree of freedom is more expensive

in terms of CPU cost since it requires the computation of an additional diffusion term. The computational

cost further increases if an elliptic equation is used to smooth the element-wise distribution of the artificial

viscosity as proposed in Ching et al.[8].
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Fig 3. Sequential adaptations of the mesh for the hypersonic flow past a cylinder defined in Table 2.

Boundary layer is frozen during adaptation.

3.3. Supersonic Plasmatron experiment

Previous test cases considered one species mixture with constant thermodynamic and transport prop-

erties. This test shows the capture of a shock in a high enthalpy facility. The inductively coupled Plas-

matron facility operated at the von Karman institute has been recently upgraded with the manufacturing

of a conical nozzle attached to the plasma torch to increase the Mach number and enable higher shear

stress during the material testing [18]. The flow entering in the nozzle exits from the plasma torch. Mass

flow rate and pressure measured experimentally at the torch exit are considered as inlet condition. A

constant pressure is assumed at the inlet. The wall of the nozzle as well as the sample are considered

as isothermal non-slip walls with a Twall = 350 [K]. Figure 7 shows the setup with the Mach number in
the nozzle and past the sample in the chamber. The chamber pressure is imposed at the outlet.

Non-equilibrium viscous flow with 5 air species (N2, O2, O, N , NO) is considered with Park [23] mecha-
nism and the problem is assumed to be 2D axi-symmetric. A polynomial order of 2 is used in the entire

domain except in the shock region where the limiting procedure is applied. Within the shock region, the

mesh is refined a priori.
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(a) Temperature field (b) Stagnation line temperature

Fig 4. Comparison of the limiting strategy and artificial viscosity method for the inviscid Mach 6 flow past

a cylinder.

Fig 5. Mesh and artificial viscosity field to compute the flow past a cylinder at Mach 6

Fig 6. Comparison of the solution for flow past a cylinder at Mach 6 for a refined mesh in the shock

region using limiting procedure (left) and artificial viscosity (right) computed on the coarser mesh

The shock stand-off distance is compared with the experimental picture taken during the characterization

campaign in Fig. 8(a). The qualitative comparison with the shock stand off distance is good but further

analysis should be performed to quantify the difference. The heat flux is also computed and is showed in

Fig.8(b). To compare with experimental data, catalysis should be accounted for since the data available

are measured with a copper calorimeter probe. As expected, numerical experiments have shown that

the limiting strategies has the same drawback as finite volume method with respect to the sensitivity of

mesh alignment with the shock.
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Fig 7. Numerical setup and mach number flow in the domain

(a) Comparison with experimental data (b) heat flux

Fig 8. Comparison of shock stand-off distance with experiments (a) and heat flux along the sample (b).

The experimental picture is taken by L. Sombaert [18].

4. Conclusion

Two shock capturing methods are analysed for the high-order solver Argo to simulate hypersonic flow.

Artificial viscosity and low order limiting scheme are compared in academic benchmarks. Regarding

the robustness, artificial viscosity method is not free of user parameters which are case dependent.

Correlations proposed by [31] give a good guess for those but the solver remains difficult to converge

depending on the mesh and the conditions. Limiting to a first order convergence proved to be very robust

but the accuracy is greatly decreased and solver suffers from the same drawbacks as FV methods.

Limiting should be activated only in troubled elements to ensure high-order accuracy in smooth regions.

Hence accurate and efficient anisotropic mesh adaptation is required. These approaches are relatively

easy to be implemented and more complex methods available in the literature should be tested for a

proper comparison. Further comparisons should be performed in terms of robustness, accuracy and

efficiency.
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