Pedro J. González, Guilherme C. Barbosa, Álvaro A. G. Quesada, Gerrit Stavorinus, Flávio J. Silvestre, Jonathan Hilger, Charlotte Hanke, Arne Voss, Wolf R. Krüger

DOI Number: N/A

Conference number: IFASD-2024-058

High aspect ratio flexible wing aircraft present very complex and coupled structural and flight dynamics. This research describes a bottom-to-top validation process for this type
of wing. This procedure starts with static, followed by ground vibration and wind tunnel tests. The concept of this approach is to first validate the structural and aeroelastic models before addressing the full flying vehicle. The experimental data was used to tune the structural model of a flexible flying demonstrator called TU-Flex. This aircraft was designed as a flying lab capable of recording coupled flight dynamic data of a flexible aircraft with a transport/airliner configuration. Three software were used to design the wing and to define the experimental test cases: NASTRAN, Loads Kernel, and ModSiG. The gathered data permitted tuning and showing the accuracy of the structural model. It also allows for finding inaccuracies in the aerodynamic and aeroelastic models for further tuning. The models are capable of capturing the overall aeroelastic trend nevertheless, fine tuning is now necessary. Therefore, the proposed process seems adequate to collect all necessary data to tune aeroelastic models within the process to prepare the models for the full flying vehicle.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.