Gefferson Silva, Flavio Silvestre, Mauricio Donadon

DOI Number: N/A

Conference number: IFASD-2024-059

The present work reports on the development of a numerical aerothermoelastic tool that accounts for nonlinearities of multi-physical sources to investigate the behavior of flexible
wings made of a hybrid smart material. Here, hybrid materials consist of laminated composites reinforced with embedded shape memory alloy wires. The proposed model gathers geometrical, material, and aerodynamic nonlinearities to the thermal heating dynamics of SMA wires via the Joule effect. To this end, a geometrically nonlinear FE beam model is coupled with material nonlinearities via a micromechanical model that computes the homogenized properties of hybrid laminates. Nonlinear aerodynamic effects are introduced through an unsteady strip theory method in the time domain, along with the assumption of follower aerodynamic forces and a quasi-steady stall model. A set of aerothermoelastic cases was simulated by assuming various layups and SMA temperatures to tailor and analyze the aeroelastic response of hybrid wings. The outcomes have shown a considerable reduction in post-flutter oscillations as the SMA temperature increases, indicating evidence of the capability of hybrid materials for aeroelastic applications.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.