Fintan Healy, Huaiyuan Gu, Djamel Rezgui, Jonathan Cooper

DOI Number: N/A

Conference number: IFASD-2024-122

The aviation industry’s desire to mitigate its environmental impact has re-invigorated research into hydrogen-powered aircraft concepts. The transition to liquid hydrogen (LH2) fuel
results in large, cryogenic fuel tanks that cannot be accommodated within the wingbox structure, leading to fuel-free or ‘dry’ wings. In traditional kerosene-powered configurations fuel stored in the wings provides inertial relief, reducing the loads experienced during flight and, therefore, the required structural mass. Wing-mounted fuel tanks could be used to regain this inertial relief, and this paper investigates the aerodynamic and structural implications of integrating wing-mounted hydrogen fuel tanks into medium-sized commercial aircraft with high aspect ratio wings. A multidisciplinary conceptual aircraft sizing methodology is used to explore the effect of different fuel tank configurations – where LH2 is stored within the fuselage, or in external wing-mounted tanks – on an aircraft’s geometry and performance metrics, such as fuel efficiency. The sizing of the wingbox structure includes the numerical simulation of manoeuvre, gust and turbulence loads using an aeroelastic model. The findings suggest that while wing-mounted tanks offer inertial relief, reducing wing mass by over 20%, the increased parasitic drag from the external fuel tanks outweighs the reduction in lift-induced drag. This conclusion was observed between aspect ratios of 8 and 20, suggesting that permanently attached wing-mounted fuel tanks are not viable for hydrogen-powered aircraft with high aspect ratio wings.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.