Hollis Smith, Joshua Deaton
DOI Number: N/A
Conference number: IFASD-2024-138
This paper presents the theoretical development of a novel approach to solving potential-based lifting pressures for aeroelastic analysis that circumvents the need to perturb or
remesh the analysis domain. Inspired by feature-mapping approaches used in structural topology optimization, the method maps lifting surfaces and their wakes to a fixed, non-conforming grid wherein an efficient multi-grid solver resolves the lifting pressures. The coupled aeroelastic state is resolved by a consistent and conservative transfer of loads and displacements between disciplines. To facilitate efficient gradient-based optimization, all of the employed mappings are differentiable, thus enabling efficient adjoint computation of design-sensitivities for quantities dependent on the coupled aeroelastic state. The computational efficiency gained by circumventing the need to rebuild or perturb the mesh for each analysis, the topological design flexibility achieved by mapping to an implicit representation, and the efficient adjoint computation of design sensitivities make the proposed aeroelastic solver an attractive alternative to the conventional approach.