Antoine Placzek, Antoine Riols-Fonclare, Alain Dugeai, Cédric Liauzun, Christophe Blondeau, Pierre-Emmanuel Des Boscs, Charly Mollet

DOI Number: N/A

Conference number: IFASD-2024-162

This paper details current work carried out at ONERA for the development of a modular framework dedicated to the resolution of aeroelastic problems. Historically, an aeroelastic module was implemented inside ONERA’s CFD code elsA, that includes all the necessary components to perform aeroelastic analyses (mesh deformation methods, transfer of loads and displacements, specific simulations drivers). Aeroelastic simulations capabilities within this elsA’s legacy aeroelastic module are however restricted mainly to the coupling with linear elastic structures and multiblock structured aerodynamic grids, as elsA was initially developed for structured meshes. To upgrade the aeroelastic coupling capabilities, some developments have been performed to externalize the different components outside elsA’s kernel. This modular approach offers greater flexibility in terms of coupling and also makes it possible to work not only with elsA but also with other CFD codes, while reusing the same components for coupling. Some recent applications performed in this context will be presented in this paper and some perspectives for the development of advanced modular solvers are finally presented.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.