Francesco Toffol

DOI Number: N/A

Conference number: IFASD-2024-167

In the framework of the Ultra High Aspect Ratio Wing Advanced Research and Designs (U-HARWARD) CS2JU founded project, different gust load alleviation (GLA) technologies were
developed and studied. GLA is a key enabler for the development of new generation UHARW, indeed the GLA allows to limit the gust loads and as a direct consequence it can reduce the structural weight of the wing itself and considering the snowball effect of the entire aircraft. This overall weight reduction improves the global aircraft efficiency allowing an increase in the aspect ratio. GLA technologies can be divided into two main categories: the passive ones where no action is needed to reduce the load and the active ones where a control system modifies the aerodynamic loads automatically. In this case, the passive GLA is performed with a Folding Wing Tip (FWT) developed by the University of Bristol and the GLA is performed with a Static Output Feedback controller developed by Politecnico di Milano. Both cases are compared with the baseline aircraft. A flutter assessment is performed to prove that the FWT do not introduces aeroelastic instabilities and the aircraft is flutter free across the entire flight envelope when the FWT is free to float.
A comprehensive comparison of the load envelopes obtained is provided, considering almost 2000 load cases for different flight points and mass configurations for the baseline aircraft and the GLA solutions. The gust cases are compliant with CS25 regulations and account for positive and negative cases, providing the bending-torsion envelopes in different spanwise placed monitoring stations. Thanks to NeOPT it was possible to realize a hybrid FEM model of the aircraft, where the wingbox is modelled with a detailed GFEM while the other components are modelled as stick elements. This model was used to perform linear gust analyses in Nastran with the hinge locked and released.
The results of this HI-FI structural solution are used to compare the wing failure indexes in the two conditions, assessing the effectiveness of the GLA.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.