Gefferson Silva, Bernd Boche, Hannes Wilke, Flavio Silvestre

DOI Number: N/A

Conference number: IFASD-2024-195

Before flight test campaigns are pursued, handling qualities analyses of new aircraft designs are typically performed by means of a pilot-in-the-loop full-flight simulator. This also
includes the forthcoming generation of greener aircraft, for which environmental damages resulting from aircraft emissions is mitigated. However, this type of air-vehicle requires special treatment in flight dynamics modeling and simulation, due to the interactive coupling between rigid-body dynamics and aeroelasticity. The extended model simulations result in an expressive increase in computational costs, which makes real-time simulations of flexible aircraft a current challenge. Therefore, the work at hand discusses an approach to reduce the computational consumption required for simulating slightly flexible aircraft models, in order to be embedded into a flight simulator. The mean-axes formulation is used to represent the coupled relations between flight mechanics and flexibility effects. The incremental forces and moments expressions are then modified algebraic-wise to obtain an equivalent but computationally efficient formulation to those expressions.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.