Bruno Regina, Eduardo Molina, Roberto Silva

DOI Number: N/A

Conference number: IFASD-2024-226

The objective of this work is to obtain CFD results for the dynamic response of a wing oscillating in pitch in a transonic regime using an open-source tool. The purpose is to
verify and improve the correspondence with the experimental data as performed in the wind tunnel test for a wing model developed by Embraer. For this, in some analyzes it is proposed to impose a prescribed movement to the wing in the CFD simulations that models the bending observed in the scaled model throughout the tests as a rigid mesh movement in rolling direction. Prescribed motion parameters are extracted directly from the model’s structural deformation measurement data. In addition, simulations of a test case using the Benchmark Supercritical Wing (BSCW) are performed to investigate the impact of relevant variables in this type of analysis, such as time step and mesh refinement level. The time step was identified as the most influential parameter to approximate the simulation results to experimentally obtained data. The CFD results for the Embraer wing were able to capture the main behaviors of the magnitude and phase of the non-stationary pressure coefficient on the wing, mainly for conditions of higher reduced frequencies, with an affordable computational cost.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.