Guo Li, Gongde Li, Yingyou Hou

DOI Number: N/A

Conference number: IFASD-2024-240

The plane-symmetry shuttle vehicle experiences a long period of supersonic high angle of attack flight stage during its reentry. It is hard for the aerospace-vehicles structure to sustain long-time supersonic flight at high angle of attack. Therefore, the aeroelastic response characteristics of the trailing edge rudder surface of the typical plane-symmetric shuttle configuration require in-depth analysis. In this paper, the analysis and calculation of the trailing-edge rudder of at the high angle of attack is carried out in high speed. The numerical CFD/CSD coupling method is employed in the analysis. The calculation results show that the symmetrical and antisymmetric deflection modes of the trailing-edge rudder are unstable, and the aerodynamic damping identified by the ARMA method is less than 0, which indicates the aeroelastic instability. Therefore, the dynamic stability of the structure during the reentry period needs to be considered in the design of the plane-symmetric aircraft.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.