Bret K. Stanford, Satadru Roy
DOI Number: N/A
Conference number: IFASD-2019-058
The goals of this work are to use a nested optimizer to conduct simultaneous sizing (inner level) and topology (outer level) design of a wingbox, considering uncertainties in the safety factors used to define the aeroelastic constraints. These uncertainties, propagated via sampling-driven polynomial chaos, are explicitly introduced at the inner level of the method, during gradient-based sizing optimization, resulting in a stochastic optimal sizing distribution. Measures of robustness in the total structural mass are then passed to the outer level, where a global optimizer evolves the topology parameters. The results demonstrate design choices needed to improve robustness in the face of uncertain safety factors, and the various physical mechanisms driving this process.