Kevin A. McHugh , Philip Beran, Maxim Freydin, Earl Dowell

DOI Number: N/A

Conference number: IFASD-2019-017

Development is ongoing of a new inextensible nonlinear beam and plate model to be used in aeroelastic analysis. Recently, the authors have described the theory and computations of the new structural model and have published data illustrating the responses of a beam to conservative and nonconservative point loads. Presented here is an extension of this structural model coupled with Classical Piston Theory as the aerodynamic model to determine the flutter boundary and post-flutter characteristics of cantilevered beams and plates clamped at the leading edge. Comparisons are made between first and third order Piston Theory, and a new geometric modification is added to piston theory to account for large deflections of the cantilevered configuration. It is shown that this modification increases the stiffening nonlinearity of the model, leading to more stable limit cycles.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.