Thiemo M. Kier, Mark J. Verveld, Chris W. Burkett

DOI Number: N/A

Conference number: IFASD-2015-179

The integration of loads analysis models using so called aerodynamic in-fluence coefficients (AICs) is described. These AICs relate a change of normal velocity at panel control points to a change in panel pressure distribution, allowing to consider aeroelastic effects in a straight forward manner. The aerodynamic method employed for aeroelastic applications is typically the Vortex or Doublet Lattice Method, discretizing mean lifting surfaces. In this paper, the AICs are obtained by a 3D panel method, which significantly increases the geometric fidelity and accounts for previously unmodeled flight mechanical effects. These effects are verified by comparison with the Vortex Lattice Method and CFD results. Further, an interpolation scheme is required, since the AICs of 3D panel methods depend nonlinearly on the underlying flight state. The setup of a reduced order aerodynamic model for AICs (AIC-ROM), based on proper orthogonal decomposition is presented and results are assessed.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.