Luis BAIER, Martin FRIESS, N. Hensch, Vito LEISNER

DOI Number: XXX-YYY-ZZZ

Conference number: HiSST-2024-0208

In the ongoing development of hypersonic technologies, material advancements play a key role in meeting the ever-increasing thermomechanical demands of these applications. Ultra-High Temperature Ceramic Matrix Composites (UHTCMCs) offer a promising solution for components operating under such extreme conditions. Their outstanding thermomechanical properties, including high temperature and thermal shock resistance, excellent thermal conductivity and mechanical strength, position them as ideal candidates for applications in fields like leading edges or inlet ramps for ramjets and scramjets. Due to their remarkable composition, UHTCMCs are capable of operating in temperature regimes that surpass 2000K during their operation times under oxidizing atmospheres. At the German Aerospace Center (DLR), a UHTCMC material based on carbon fibres and a zirconium diboride matrix is being developed utilizing Reactive Melt Infiltration (RMI). With RMI, the orientation of the reinforcement fibres can be tailored, to enable the material to fulfill the demanding load requirements. The reactive melt infiltration process comprises three stages: preform fabrication, pyrolysis, and the actual melt infiltration. The foundation for important material properties of the final ceramic, including the matrix composition, is established in the preform production, which is a crucial step in the process. A boron- and zirconium diboride-based slurry is infiltrated into pitched-based carbon fibre fabric. Subsequently, the preforms are consolidated, pyrolysed, and infiltrated with molten Zr2Cu to obtain the UHTC matrix by in situ reaction with the preform elements. Scanning Electron Microscopy (SEM) and Energy-dispersive X-Ray Spectroscopy (EDX) enable examination of the microstructural features, including the arrangement and distribution of zirconium diboride within the matrix. Mechanical evaluation of the UHTCMCs is conducted via 3-point bending tests at both room temperature and at high temperature. It has been demonstrated that Ultra-High Temperature Ceramic Matrix Composites can be produced by means of reactive melt infiltration, and that they retain their strength even at high temperatures.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.