V. Wartemann, A. Wagner, D. Surujhlal, C. Dittert

DOI Number XXX-YYY-ZZZ

Conference Number HiSST 2022-0417

Previous investigations in the High Enthalpy Shock Tunnel G ̈ottingen (HEG) of the German Aerospace Center (DLR) show that carbon fiber reinforced carbon ceramic (C/C) surfaces can be utilized to damp hypersonic boundary layer instabilities resulting in a delay of boundary layer transition onset. Numerical stability analyses confirmed these experimental results. However, C/C has some disadvantages, especially the limited oxidation resistance and its low mechanical strength, which could be critical during hypersonic flights. Thus, an ultrasonically absorptive fiber reinforced ceramic material based on a silicon carbide (C/C-SiC) was developed in the past years to fulfill this need. The present paper addresses the numerical rebuild of the C/C-SiC absorber properties using impedance boundary conditions together with linear stability analysis. The focus of this paper is on the numerical comparison of the original C/C material and the improved C/C-SiC material, referred to as OCTRA in the literature. The influence on the second modes and the transition itself is investigated. The numerical results are compared with HEG wind tunnel tests. The wind tunnel model tested in HEG is a 7◦ half-angle blunted cone with an overall model length of about 1.1m and a nose tip radius of 2.5 mm. These experiments were performed at Mach 7.5 and at different freestream unit Reynolds numbers.

Read the full paper here>

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.