Martin Tang, Marc Marc Böswald

DOI Number: N/A

Conference number: IFASD-2024-077

GVT are conducted to identify structural modal models which are used afterwards either to validate an existing numerical model or to establish a mathematical substitute model for further analysis, e.g. as input for flutter analysis. The use of experimental substitute models is not based on modelling assumptions. However, the system identification methods applied to the test data are based on the assumptions of linear and time-invariant systems (LTI). Most often nonlinear effects are observed with aerospace structures in a GVT. This would also affect the results of flutter analysis and critical flutter speeds. However, considering nonlinear effects in the analysis model and subsequent nonlinear simulations might not be feasible shortly before the first flight. This work proposes a procedure to perform flutter analysis in time domain with a nonlinear mathematical substitute model, which can be derived from experimental data. A numerical model of a wing section is considered in this work to assess the presented approach. It is shown that LCOs with a fair agreement in amplitude and flight speed of LCO onset in comparison to the nonlinear simulation can be obtained.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.