Natsuki Tsushima, Hitoshi Arizono, Masato Tamayama, Tomohiro Yokozeki, Weihua Su

DOI Number: N/A

Conference number: IFASD-2019-091

In this paper, a comprehensive multi-fidelity aeroelastic framework for highly flexible wings is presented, which involves aerodynamic models with different fidelities. A corotational approach with shell finite elements is used to model the geometrical nonlinearity of flexible wings. An unsteady vortex-lattice aerodynamic method and a fast unstructured CFD code are coupled with the structural model subject to the large deformations, providing different fidelity solutions. The developed geometrically nonlinear aeroelastic solutions with different fidelities are compared to evaluate their accuracies and computational efficiencies.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.