Stefano Buoso, Rafael Palacios

DOI Number: N/A

Conference number: IFASD-2015-072

This paper presents a numerical investigation on aerodynamic control of integrally-actuated membrane wings made of dielectric elastomers. They combine the advantages of membrane shape adaptability with the benefits of the simple, lightweight but high-authority control mechanism offered by integral actuation. For that purpose, high-fidelity numerical models have been developed to predict their performance. They include a fluid solver based on the direct numerical integration of the unsteady NavierStokes equations, an electromechanical constitutive material model and a non-linear threedimensional membrane structural model. In addition, using the Eigensystem Realization Algorithm, it is obtained a very low order model description of the fully coupled aeroelectromechanical system to aid the design of a simple PID control scheme for the feedback control of the wing. The resulting regulator is then implemented in the high-fidelity model and used for the mitigation of flow disturbances.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.