Dossogne, J.P. Noël, C. Grappasonni, G. Kerschen, B. Peeters, J. Debille, M. Vaes, J. Schoukens

DOI Number: N/A

Conference number: IFASD-2015-035

Although they are generally modelled as linear systems, aircraft structures are known to be prone to nonlinear phenomena. A specific challenge encountered with fighter aircraft, besides aeroelastic nonlinearity, is the modelling of the wing-to-payload mounting interfaces. For large amplitudes of vibration, friction and gaps may be triggered in these connections and markedly impact the dynamic behaviour of the complete structure. In this series of two papers, the nonlinear dynamics of an F-16 aircraft is investigated using rigorous methods applied to real data collected during a ground vibration test campaign. The present work focuses on the analysis of sine-sweep measurements in order to get an insightful understanding about the nonlinear behaviour of the aircraft. To this extent, restoring force surface and wavelet transform methods are applied both on the collected GVT data and simulation results performed on a simple numerical model of the F-16 wing and its payload.

Read the full paper here

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.