Daniel Prokein  , Christian Dittert  , Hannah Böhrk,, Jens von Wolfersdorf

DOI Number XXX-YYY-ZZZ

Conference Number HiSST 2018_2670918

Transpiration cooling applied to modern ceramic matrix composite materials is an interesting concept for thermal protection of future aerospace applications. Therefore, reliable and accurate numerical tools for the simulation of transpiration cooling processes in complex flow situations and for complex porous geometries are needed. In this study, we present a fully coupled OpenFOAM solver and discuss the choice of suitable interface conditions as well as the coupling of numerical domains at the transpired surface. Additionally, a modified turbulence boundary condition for transpiration through low-porosity materials is proposed. The numerical solver is then applied to validation testcases with a flat and a double wedge porous sample under blowing ratios up to = 0.75%. The corresponding experiments with Carbon/Carbon samples were performed at the ITLR Hot Gas Facility at supersonic steady-state conditions, i.e. = 2.5 and = 500 K. The simulation results are in good overall agreement with the experimental data for both testcases while capturing the influences of blowing ratio, as well as variations of the external flow field and in the heat flux distribution. Temperature predictions for the sample surface, within the porous wall, and in the downstream wake region show a good conformity to measurements, whereas deviations are observed in the direct wake. Based on the complementary insights provided by the numerical results, aspects such as the coolant through-flow behaviour as well as the sample’s internal temperature distribution and heat conduction are analysed.

Read the full paper from the Springer website >

Email
Print
LinkedIn
The paper above was part of  proceedings of a CEAS event and as such the author has signed a publication agreement to have their paper published in the repository. In the case this paper is found somewhere else CEAS always links to the other source.  CEAS takes great care in making the correct content available to the reader. If any mistakes are found  in the listings please contact us directly at papers@aerospacerepository.org and we will correct the listing promptly.  CEAS cannot be held liable either for mistakes in editorial or technical aspects, nor for omissions, nor for the correctness of the content. In particular, CEAS does not guarantee completeness or correctness of information contained in external websites which can be accessed via links from CEAS’s websites. Despite accurate research on the content of such linked external websites, CEAS cannot be held liable for their content. Only the content providers of such external sites are liable for their content. Should you notice any mistake in technical or editorial aspects of the CEAS site, please do not hesitate to inform us.